ترغب بنشر مسار تعليمي؟ اضغط هنا

تحسين دقة التنبؤ النطق باستخدام المورفولوجيا

Improved pronunciation prediction accuracy using morphology

607   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

المعجمات المعجمية ونماذج التنبؤ هي مكون رئيسي في العديد من أنظمة التوليف والتعرف على الكلام. نحن نعلم أن الكلمات ذات الصلة المورفولوجية تتبع عادة نمط ثابت من النطق والذين يمكن وصفها بالنماذج الخاصة باللغة. في هذا العمل، نستكشف مدى استخدام الشبكات العصبية المتكررة العميقة لتعلم هذا النمط تلقائيا واستغلال هذا النمط لتحسين جودة تنبؤ الكلمات ذات الصلة من خلال انعطاف مورفولوجي. نقترح مقارنتين جديدة لتزويد المعلومات المورفولوجية، باستخدام الطبقة المورفولوجية للكلمة وليمما، والتي يتم تفوحها عادة في المعجم القياسي. نبلغ عن التحسينات عبر عدد من اللغات الأوروبية بدرجات متفاوتة من التعقيد الصوتي والمورفولوجي، وعائلتين لغتان، مع تحسينات أكبر لغات حيث تكون مهمة تنبؤ النطق بطبيعتها أكثر تحديا. ونحن نلاحظ أيضا أن الجمع بين شبكات LSTM ثنائية الاتجاه مع آليات الاهتمام هي نهج عصبي فعال للمشكلة الحسابية التي نظرت، عبر اللغات. يبدو أن نهجنا مفيدا بشكل خاص في إعداد الموارد المنخفض، سواء من تلقاء نفسها وبتعلم التحويل.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

اكتسبت المهام المورفولوجية شعبية لائقة داخل مجتمع NLP في السنوات الأخيرة، حيث توفر مجموعات بيانات كبيرة متعددة اللغات تحليلا مورفولوجي للكلمات، إما في أو خارج السياق. ومع ذلك، فإن الافتقار إلى تعريف لغوي واضح للكلمات ديطات العمل التلقيح غير مكتمل واج ب في التناقضات، لا سيما عبر اللغوية. في هذا العمل، نقوم بتوسيع الانعكاسات المورفولوجية للكلمات لإنقاذ الجمل لتوفير عالمية حقيقية منفصلة عن تقاليد هربيا لاستخدام المساحة البيضاء. للسماح بإلقاء التوضيح عن انعطاف الجملة، نحدد مخططا شرحا مورفولوجي بواسطة مجموعة ثابتة من ميزات الانهيار. نقدم مجموعة بيانات صغيرة عبر اللغوية بما في ذلك جمل بسيطة نصف تم إنشاؤها بشكل دائم في 4 لغات متنوعة من الناحية النموذجية المشروح وفقا لمخططنا المقترح، وإظهار أن مهمة إعادة انتقالة يصعب بشكل كبير ولكن تغيير النطاق من الكلمات إلى محددة بشكل جيد الجمل تسمح الواجهة مع نماذج اللغة السياقية.
تصف هذه الورقة العمل المستمر الذي يهدف إلى إضافة معلومات النطق إلى الموارد الدلالية المعجمية، مع التركيز على WordNets المفتوح.هدفنا ليس فقط لإضافة طريقة جديدة إلى تلك الشبكات الدلالية، ولكن أيضا لعلامة الجوطاء المدرجة فيها مع معلومات النطق المرتبطة ب معاني مختلفة.هذا العمل يمكن أن يسهم على المدى الطويل لزيادة الموارد متعددة الوسائط، والذي يجمع بين النص والكلام.
تنبؤ نوع نقطة الفائدة (POI) هو مهمة استنتاج نوع المكان الذي تم فيه مشاركة مشاركة وسائل التواصل الاجتماعي. إن الاستنتاج من نوع POI مفيد للدراسات في العلوم الاجتماعية الحاسوبية بما في ذلك الاجتماع الاجتماعي، والجيولوجيوسيوس، والجغرافيا الثقافية، ولديه تطبيقات في تكنولوجيات الشبكات الجيولوجية مثل أنظمة التوصية والتصور. الجهود السابقة في التنبؤ بنوع POI التركيز فقط على النص، دون أخذ معلومات مرئية في الاعتبار. ولكن في الواقع، مجموعة متنوعة من الطرائق، فضلا عن علاقاتهم شبهية مع بعضها البعض، شكل التواصل والتفاعلات في وسائل التواصل الاجتماعي. تقدم هذه الورقة دراسة حول التنبؤ بنوع POI باستخدام معلومات متعددة الوسائط من النص والصور المتوفرة في وقت النشر. لهذا الغرض، فإننا نشعر بإثراء البيانات المتاحة حاليا لتنبؤ بنوع POI مع الصور التي ترافق الرسائل النصية. يتم استخراج الأسلوب المقترح لدينا المعلومات ذات الصلة من كل طريقة لالتقاط التفاعلات الفعالة بين النصوص والصورة تحقيق ماكرو F1 من 47.21 من 4 فئات تتفوق بشكل كبير على الطريقة التي من بين الفني للتنبؤ بنوع POI بناء على طرق النص فقط. أخيرا، نقدم تحليلا مفصلا لإلقاء الضوء على التفاعلات عبر الوسائط والقيود المتمثلة في أفضل نموذج أداء لدينا.
استعرضنا في هذا العمل بعض أهم أساليب التنبؤ بالمتسلسلات الزمنية وهي تحليل المتسلسلات الزمنية إلى مركباتها الأساسية (اتجاه عام، موسمية، دورية، عشوائية)، طرائق التمهيد الأسي، نماذج الانحدار الذاتي والمتوسطات المتحركة التكاملية، ثم استعرضنا عدة طرائق هج ينة للتنبؤ، ثم قدمنا طريقة جديدة مقترحة للتنبؤ تعتمد على دمج طريقتي التمهيد الأسي و بوكس-جنكينز وذلك وفق المتوسط الموزون بقيم معايير متوسط الأخطاء المطلق النسبي MAPE لكلا الطريقتين، وطبقنا الطرائق السابقة على ثلاث متسلسلات زمنية موسمية، الأولى متسلسلة درجات الحرارة الجافة ساعياُ في مدينة حلب وذلك في شهر آب للعام 2011 أي طول الدورة الموسمية s=24، والثانية متسلسلة كمية إنتاج الحليب شهرياً في استراليا مقاسة بالرطل لكل بقرة وذلك من شهر كانون الثاني عام 1962 ولغاية شهر كانون الأول عام 1975 أي طول الدورة الموسمية s=12، أما الثالثة متسلسلة كمية الكهرباء المنتجة في استراليا فصلياً وذلك في الفترة الممتدة من آذار 1956 ولغاية أيلول للعام 1994 أي طول الدورة الموسمية s=4، وقارننا النتائج التي توصلنا إليها فكانت أفضل طريقة للتنبؤ هي الطريقة المقترحة.
أهداف البحث: -1 دراسة نظرية عن أهمية و أثر الدقة في التنبؤ بالمبيعات على خطط الإنتاج و التسويق و التوزيع. -2 دراسة مرجعية عن التنقيب في البيانات و التنبؤ باستخدام السلاسل الزمنية و الشبكات العصبونية. -3 استخدام الشبكات العصبية الصناعية في زيادة د قة التنبؤ بحجم المبيعات الشهرية لشركة الفنار. -4 اختبار تفوق الشبكات العصبية في التنبؤ على نموذجي المتوسطات المتحركة و الانحدار.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا