توفر Argeddings Word عبر اللغات طريقة للمعلومات التي سيتم نقلها بين اللغات.في هذه الورقة، نقيم امتدادا لنهج تدريب مشترك لتعلم التضامن المتبادل الذي يتضمن معلومات الفرعية أثناء التدريب.قد تكون هذه الطريقة مناسبة بشكل خاص لأنها لغات منخفضة الموارد ولغات غنية بالمظورة لأنه يمكن تدريبها على سورانيا أحادية الحجم متواضعة، وهي قادرة على تمثيل الكلمات الخارجية (OOVS).نحن نعتبر تحديي المعجم الثنائي اللغة، بما في ذلك التقييم يركز على OOVs.نجد أن هذه الطريقة تحقق تحسينات حول النهج السابقة، لا سيما بالنسبة إلى OOVS.
Cross-lingual word embeddings provide a way for information to be transferred between languages. In this paper we evaluate an extension of a joint training approach to learning cross-lingual embeddings that incorporates sub-word information during training. This method could be particularly well-suited to lower-resource and morphologically-rich languages because it can be trained on modest size monolingual corpora, and is able to represent out-of-vocabulary words (OOVs). We consider bilingual lexicon induction, including an evaluation focused on OOVs. We find that this method achieves improvements over previous approaches, particularly for OOVs.
المراجع المستخدمة
https://aclanthology.org/
نقترح نهجا جديدا لتعلم تضمين الكلمات المتبادلة عبر السياق بناء على كائن مواز صغير (E.G. بضع مئات من أزواج الجملة). تتمتع طريقتنا بدمج الكلمات عبر نموذج فك تشفير LSTM يترجم في وقت واحد وإعادة بناء جملة مدخلات. من خلال تقاسم المعلمات النموذجية بين لغات
إن التقاط معنى كلمة في السياق والتمييز بين المراسلات والاختلافات عبر اللغات هو مفتاح بناء نماذج تمثيل نصية متعددة اللغات والنجاح. ومع ذلك، فإن مجموعات بيانات التقييم المتعددة اللغات الحالية التي تقيم الدلالات المعجمية في السياق "لها قيود مختلفة. على
تحفز الوجود الواسع للغة الهجومية على وسائل التواصل الاجتماعي تطوير أنظمة قادرة على الاعتراف بهذا المحتوى تلقائيا.بصرف النظر عن بعض الاستثناءات البارزة، فإن معظم الأبحاث حول تحديد اللغة الهجومية التلقائية تعامل مع اللغة الإنجليزية.لمعالجة هذا القصور،
نجحت شبكات الخصومة الإندنية (GANS) في تحفيز Adgeddings Word عبر اللغات - خرائط من الكلمات المتطابقة عبر اللغات - دون إشراف.على الرغم من هذه النجاحات، فإن أداء GANS الخاص بالحالة الصعبة للغات البعيدة لا يزال غير مرض.تم تفسير هذه القيود من قبل قوات الق
أثبتت تضيير Word عبر اللغات (CLWES) لا غنى عنها لمختلف مهام معالجة اللغة الطبيعية، على سبيل المثال، تحريض معجم ثنائي اللغة (BLI). ومع ذلك، فإن عدم وجود البيانات غالبا ما يضعف جودة التمثيلات. اقترحت النهج المختلفة التي تتطلب إشراف ضعيف متصلي فقط، لكن