يمكن أن تفحص نماذج استخراج أحداث المخدرات السلبية (ADE) بسرعة مجموعات كبيرة من نصوص وسائل التواصل الاجتماعي، والكشف عن ذكرات التفاعلات السلبية ذات الصلة بالمخدرات وتحريك التحقيقات الطبية.ومع ذلك، على الرغم من التقدم الأخير في NLP، فإنه غير معروف حاليا إذا كانت هذه النماذج قوية في مواجهة النفي، والتي تنتشر عبر أصناف اللغة.في هذه الورقة، نقيم ثلاث أنظمة ثلاثية، تظهر هشاشةها ضد النفي، ثم نقدم استراتيجيتين ممكنين لزيادة متانة هذه النماذج: نهج خط أنابيب، بالاعتماد على مكون محدد للكشف عن النفي؛تكبير بيانات استخراج ADE لإنشاء عينات نفي بشكل مصطنع وتدريب النماذج الأخرى.نظهر أن كلا الاستراتيجيتين تجلب الزيادات الكبيرة في الأداء، مما أدى إلى خفض عدد الكيانات الزائفة المتوقعة من النماذج.سيتم إصدار بيانات DataSet و Code علنا لتشجيع البحث على الموضوع.
Adverse Drug Event (ADE) extraction models can rapidly examine large collections of social media texts, detecting mentions of drug-related adverse reactions and trigger medical investigations. However, despite the recent advances in NLP, it is currently unknown if such models are robust in face of negation, which is pervasive across language varieties. In this paper we evaluate three state-of-the-art systems, showing their fragility against negation, and then we introduce two possible strategies to increase the robustness of these models: a pipeline approach, relying on a specific component for negation detection; an augmentation of an ADE extraction dataset to artificially create negated samples and further train the models. We show that both strategies bring significant increases in performance, lowering the number of spurious entities predicted by the models. Our dataset and code will be publicly released to encourage research on the topic.
المراجع المستخدمة
https://aclanthology.org/
نقدم خوارزمية استنادا إلى محولات متعددة الطبقات لتحديد ردود الفعل الدوائية الضارة (ADR) في بيانات وسائل التواصل الاجتماعي.يعتمد نموذجنا على خصائص المشكلة وخصائص ASTDDings Word السياقي لاستخراج وجهات نظرتين من المستندات.ثم يتم تدريب المصنف على كل طريق
أبحاث الورق مشكلة الكشف عن تأثير سلبي المخدرات في نصوص وسائل التواصل الاجتماعي.نحن نصف تطوير هذا النظام التصنيف للتغريدات الروسية.لزيادة مجموعة بيانات القطار، نطبق بضعة تقنيات زيادة وتحليل تأثيرها بالمقارنة مع أنظمة مماثلة مقدمة في ورشة عمل SMM4H 2021 سنوات.
تصف هذه الورقة النماذج التي تم تطويرها من أجل تعدين وسائل التواصل الاجتماعي للصحة (SMM4H) 2021 المهام المشتركة.شارك فريقنا في المراكز الفرعية الأولى التي يصنف التغريدات مع تأثير المخدرات الضارة (ADE).يستخدم طراز أفضل أداء لدينا BERTWEAR متبوعة بطبقة
مشاكل صعبة مثل استجابة الأسئلة المفتوحة للنطاق الرد، وفحص الحقائق، وربط فتحة وملء الكيان تتطلب الوصول إلى مصادر المعرفة الكبيرة والخارجية. في حين أن بعض النماذج تعمل بشكل جيد على المهام الفردية، فإن النماذج العامة النامية صعبة لأن كل مهمة قد تتطلب فه
النمذجة المتنقلة المتسلسلة قوية هي مهمة أساسية في العالم الحقيقي حيث تكون المدخلات صاخبة في كثير من الأحيان. تحتوي المدخلات التي تم إنشاؤها عن المستخدمين والآلة على أنواع مختلفة من الضوضاء في شكل أخطاء إملائية، والأخطاء النحوية، وأخطاء التعرف على الأ