ترغب بنشر مسار تعليمي؟ اضغط هنا

Subnormalized states and trace-nonincreasing maps

55   0   0.0 ( 0 )
 نشر من قبل Valerio Cappellini Dr.
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the set of completely positive, trace-nonincreasing linear maps acting on the set M_N of mixed quantum states of size N. Extremal point of this set of maps are characterized and its volume with respect to the Hilbert-Schmidt (Euclidean) measure is computed explicitly for an arbitrary N. The spectra of partially reduced rescaled dynamical matrices associated with trace-nonincreasing completely positive maps belong to the N-cube inscribed in the set of subnormalized states of size N. As a by-product we derive the measure in M_N induced by partial trace of mixed quantum states distributed uniformly with respect to HS-measure in $M_{N^2}$.



قيم البحث

اقرأ أيضاً

204 - M. Asorey , P. Facchi , V.I. Manko 2015
We elaborate on the notion of generalized tomograms, both in the classical and quantum domains. We construct a scheme of star-products of thick tomographic symbols and obtain in explicit form the kernels of classical and quantum generalized tomograms . Some of the new tomograms may have interesting applications in quantum optical tomography.
We associate with k hermitian Ntimes N matrices a probability measure on R^k. It is supported on the joint numerical range of the k-tuple of matrices. We call this measure the joint numerical shadow of these matrices. Let k=2. A pair of hermitian Nti mes N matrices defines a complex Ntimes N matrix. The joint numerical range and the joint numerical shadow of the pair of hermitian matrices coincide with the numerical range and the numerical shadow, respectively, of this complex matrix. We study relationships between the dynamics of quantum maps on the set of quantum states, on one hand, and the numerical ranges, on the other hand. In particular, we show that under the identity resolution assumption on Kraus operators defining the quantum map, the dynamics shrinks numerical ranges.
We introduce a concept of Kadison-Schwarz divisible dynamical maps. It turns out that it is a natural generalization of the well known CP-divisibility which characterizes quantum Markovian evolution. It is proved that Kadison-Schwarz divisible maps a re fully characterized in terms of time-local dissipative generators. Simple qubit evolution illustrates the concept.
139 - D. A. Trifonov 2012
Nonlinear fermions of degree $n$ ($n$-fermions) are introduced as particles with creation and annihilation operators obeying the simple nonlinear anticommutation relation $AA^dagger + {A^dagger}^n A^n = 1$. The ($n+1$)-order nilpotency of these opera tors follows from the existence of unique $A$-vacuum. Supposing appropreate ($n+1$)-order nilpotent para-Grassmann variables and integration rules the sets of $n$-fermion number states, right and left ladder operator coherent states (CS) and displacement-operator-like CS are constructed. The $(n+1)times(n+1)$ matrix realization of the related para-Grassmann algebra is provided. General $(n+1)$-order nilpotent ladder operators of finite dimensional systems are expressed as polynomials in terms of $n$-fermion operators. Overcomplete sets of (normalized) right and left eigenstates of such general ladder operators are constructed and their properties briefly discussed.
We study truncated Bose operators in finite dimensional Hilbert spaces. Spin coherent states for the truncated Bose operators and canonical coherent states for Bose operators are compared. The Lie algebra structure and the spectrum of the truncated Bose operators are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا