ترغب بنشر مسار تعليمي؟ اضغط هنا

Nonlinear Fermions and Coherent States

144   0   0.0 ( 0 )
 نشر من قبل Dimiter Trifonov
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English
 تأليف D. A. Trifonov




اسأل ChatGPT حول البحث

Nonlinear fermions of degree $n$ ($n$-fermions) are introduced as particles with creation and annihilation operators obeying the simple nonlinear anticommutation relation $AA^dagger + {A^dagger}^n A^n = 1$. The ($n+1$)-order nilpotency of these operators follows from the existence of unique $A$-vacuum. Supposing appropreate ($n+1$)-order nilpotent para-Grassmann variables and integration rules the sets of $n$-fermion number states, right and left ladder operator coherent states (CS) and displacement-operator-like CS are constructed. The $(n+1)times(n+1)$ matrix realization of the related para-Grassmann algebra is provided. General $(n+1)$-order nilpotent ladder operators of finite dimensional systems are expressed as polynomials in terms of $n$-fermion operators. Overcomplete sets of (normalized) right and left eigenstates of such general ladder operators are constructed and their properties briefly discussed.



قيم البحث

اقرأ أيضاً

We explore squeezed coherent states of a 3-dimensional generalized isotonic oscillator whose radial part is the newly introduced generalized isotonic oscillator whose bound state solutions have been shown to admit the recently discovered $X_1$-Laguer re polynomials. We construct a complete set of squeezed coherent states of this oscillator by exploring the squeezed coherent states of the radial part and combining the latter with the squeezed coherent states of the angular part. We also prove that the three mode squeezed coherent states resolve the identity operator. We evaluate Mandels $Q$-parameter of the obtained states and demonstrate that these states exhibit sub-Possionian and super-Possionian photon statistics. Further, we illustrate the squeezing properties of these states, both in the radial and angular parts, by choosing appropriate observables in the respective parts. We also evaluate Wigner function of these three mode squeezed coherent states and demonstrate squeezing property explicitly.
We study truncated Bose operators in finite dimensional Hilbert spaces. Spin coherent states for the truncated Bose operators and canonical coherent states for Bose operators are compared. The Lie algebra structure and the spectrum of the truncated Bose operators are discussed.
215 - Remi Carles 2010
We consider the propagation of wave packets for a one-dimensional nonlinear Schrodinger equation with a matrix-valued potential, in the semi-classical limit. For an initial coherent state polarized along some eigenvector, we prove that the nonlinear evolution preserves the separation of modes, in a scaling such that nonlinear effects are critical (the envelope equation is nonlinear). The proof relies on a fine geometric analysis of the role of spectral projectors, which is compatible with the treatment of nonlinearities. We also prove a nonlinear superposition principle for these adiabatic wave packets.
353 - Remi Carles 2009
We consider the propagation of wave packets for the nonlinear Schrodinger equation, in the semi-classical limit. We establish the existence of a critical size for the initial data, in terms of the Planck constant: if the initial data are too small, t he nonlinearity is negligible up to the Ehrenfest time. If the initial data have the critical size, then at leading order the wave function propagates like a coherent state whose envelope is given by a nonlinear equation, up to a time of the same order as the Ehrenfest time. We also prove a nonlinear superposition principle for these nonlinear wave packets.
In this paper we treat coherent-squeezed states of Fock space once more and study some basic properties of them from a geometrical point of view. Since the set of coherent-squeezed states ${ket{alpha, beta} | alpha, beta in fukuso}$ makes a real 4- dimensional surface in the Fock space ${cal F}$ (which is of course not flat), we can calculate its metric. On the other hand, we know that coherent-squeezed states satisfy the minimal uncertainty of Heisenberg under some condition imposed on the parameter space ${alpha, beta}$, so that we can study the metric from the view point of uncertainty principle. Then we obtain a surprising simple form (at least to us). We also make a brief review on Holonomic Quantum Computation by use of a simple model based on nonlinear Kerr effect and coherent-squeezed operators.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا