ﻻ يوجد ملخص باللغة العربية
As two of the most important entanglement measures--the entanglement of formation and the entanglement of distillation--have so far been limited to bipartite settings, the study of other entanglement measures for multipartite systems appears necessary. Here, connections between two other entanglement measures--the relative entropy of entanglement and the geometric measure of entanglement--are investigated. It is found that for arbitrary pure states the latter gives rise to a lower bound on the former. For certain pure states, some bipartite and some multipartite, this lower bound is saturated, and thus their relative entropy of entanglement can be found analytically in terms of their known geometric measure of entanglement. For certain mixed states, upper bounds on the relative entropy of entanglement are also established. Numerical evidence strongly suggests that these upper bounds are tight, i.e., they are actually the relative entropy of entanglement.
We extend Vedral and Plenios theorem (theorem 3 in Phys. Rev. A 57, 1619) to a more general case, and obtain the relative entropy of entanglement for a class of mixed states, this result can also follow from Rains theorem 9 in Phys. Rev. A 60, 179.
We calculate the relative entropy of entanglement for rotationally invariant states of spin-1/2 and arbitrary spin-$j$ particles or of spin-1 particle and spin-$j$ particle with integer $j$. A lower bound of relative entropy of entanglement and an up
The entanglement entropy (EE) can measure the entanglement between a spatial subregion and its complement, which provides key information about quantum states. Here, rather than focusing on specific regions, we study how the entanglement entropy chan
The geometric measure of entanglement is the distance or angle between an entangled target state and the nearest unentangled state. Often one considers the geometric measure of entanglement for highly symmetric entangled states because it simplifies
Quantifying entanglement for multipartite quantum state is a crucial task in many aspects of quantum information theory. Among all the entanglement measures, relative entropy of entanglement $E_{R}$ is an outstanding quantity due to its clear geometr