ﻻ يوجد ملخص باللغة العربية
We calculate the relative entropy of entanglement for rotationally invariant states of spin-1/2 and arbitrary spin-$j$ particles or of spin-1 particle and spin-$j$ particle with integer $j$. A lower bound of relative entropy of entanglement and an upper bound of distillable entanglement are presented for rotationally invariant states of spin-1 particle and spin-$j$ particle with half-integer $j$.
We extend Vedral and Plenios theorem (theorem 3 in Phys. Rev. A 57, 1619) to a more general case, and obtain the relative entropy of entanglement for a class of mixed states, this result can also follow from Rains theorem 9 in Phys. Rev. A 60, 179.
As two of the most important entanglement measures--the entanglement of formation and the entanglement of distillation--have so far been limited to bipartite settings, the study of other entanglement measures for multipartite systems appears necessar
The property of superadditivity of the quantum relative entropy states that, in a bipartite system $mathcal{H}_{AB}=mathcal{H}_A otimes mathcal{H}_B$, for every density operator $rho_{AB}$ one has $ D( rho_{AB} || sigma_A otimes sigma_B ) ge D( rho_A
Quantifying entanglement for multipartite quantum state is a crucial task in many aspects of quantum information theory. Among all the entanglement measures, relative entropy of entanglement $E_{R}$ is an outstanding quantity due to its clear geometr
The existence of a positive log-Sobolev constant implies a bound on the mixing time of a quantum dissipative evolution under the Markov approximation. For classical spin systems, such constant was proven to exist, under the assumption of a mixing con