ﻻ يوجد ملخص باللغة العربية
Quantifying entanglement for multipartite quantum state is a crucial task in many aspects of quantum information theory. Among all the entanglement measures, relative entropy of entanglement $E_{R}$ is an outstanding quantity due to its clear geometric meaning, easy compatibility with different system sizes, and various applications in many other related quantity calculations. Lower bounds of $E_R$ were previously found based on distance to the set of positive partial transpose states. We propose a method to calculate upper bounds of $E_R$ based on active learning, a subfield in machine learning, to generate an approximation of the set of separable states. We apply our method to calculate $E_R$ for composite systems of various sizes, and compare with the previous known lower bounds, obtaining promising results. Our method adds a reliable tool for entanglement measure calculation and deepens our understanding for the structure of separable states.
We provide a versatile upper bound on the number of maximally entangled qubits, or private bits, shared by two parties via a generic adaptive communication protocol over a quantum network when the use of classical communication is not restricted. Alt
We extend Vedral and Plenios theorem (theorem 3 in Phys. Rev. A 57, 1619) to a more general case, and obtain the relative entropy of entanglement for a class of mixed states, this result can also follow from Rains theorem 9 in Phys. Rev. A 60, 179.
We calculate the relative entropy of entanglement for rotationally invariant states of spin-1/2 and arbitrary spin-$j$ particles or of spin-1 particle and spin-$j$ particle with integer $j$. A lower bound of relative entropy of entanglement and an up
As two of the most important entanglement measures--the entanglement of formation and the entanglement of distillation--have so far been limited to bipartite settings, the study of other entanglement measures for multipartite systems appears necessar
Given a finite dimensional pure state transformation restricted by entanglement assisted local operations and classical communication (ELOCC), we derive minimum and maximum bounds on the entanglement of an ancillary catalyst that allows that transfor