ﻻ يوجد ملخص باللغة العربية
Although the convergent close-coupling (CCC) method has achieved unprecedented success in obtaining accurate theoretical cross sections for electron-atom scattering, it generally fails to yield converged energy distributions for ionization. Here we report converged energy distributions for ionization of H(1s) by numerically integrating Schroedingers equation subject to correct asymptotic boundary conditions for the Temkin-Poet model collision problem, which neglects angular momentum. Moreover, since the present method is complete, we obtained convergence for all transitions in a single calculation. Complete results, accurate to 1%, are presented for impact energies of 54.4 and 40.8 eV, where CCC results are available for comparison.
Based on a three-potential formalism we propose mathematically well-behaved Faddeev-type integral equations for the atomic three-body problem and descibe their solutions in Coulomb-Sturmian space representation. Although the system contains only long
The study of scattering processes in few body systems is a difficult problem especially if long range interactions are involved. In order to solve such problems, we develop here a potential-splitting approach for three body systems. This approach is
A numerical approach to the problem of wave scattering by many small particles is developed under the assumptions k<<1, d>>a, where a is the size of the particles and d is the distance between the neighboring particles. On the wavelength one may have
A three-body scattering process in the presence of Coulomb interaction can be decomposed formally into a two-body single channel, a two-body multichannel and a genuine three-body scattering. The corresponding integral equations are coupled Lippmann-S
A novel method for calculating resonances in three-body Coulombic systems is proposed. The Faddeev-Merkuriev integral equations are solved by applying the Coulomb-Sturmian separable expansion method. The $e^- e^+ e^-$ S-state resonances up to $n=5$ threshold are calculated.