ﻻ يوجد ملخص باللغة العربية
A three-body scattering process in the presence of Coulomb interaction can be decomposed formally into a two-body single channel, a two-body multichannel and a genuine three-body scattering. The corresponding integral equations are coupled Lippmann-Schwinger and Faddeev-Merkuriev integral equations. We solve them by applying the Coulomb-Sturmian separable expansion method. We present elastic scattering and reaction cross sections of the $e^++H$ system both below and above the $H(n=2)$ threshold. We found excellent agreements with previous calculations in most cases.
We propose a three-potential formalism for the three-body Coulomb scattering problem. The corresponding integral equations are mathematically well-behaved and can succesfully be solved by the Coulomb-Sturmian separable expansion method. The results s
Based on a three-potential formalism we propose mathematically well-behaved Faddeev-type integral equations for the atomic three-body problem and descibe their solutions in Coulomb-Sturmian space representation. Although the system contains only long
A distorted-wave version of the renormalisation group is applied to scattering by an inverse-square potential and to three-body systems. In attractive three-body systems, the short-distance wave function satisfies a Schroedinger equation with an attr
A novel method for calculating resonances in three-body Coulombic systems is presented. The Faddeev-Merkuriev integral equations are solved by applying the Coulomb-Sturmian separable expansion method. To show the power of the method we calculate resonances of the three-$alpha$ and the $H^-$ systems.
The three-body energy-dependent effective interaction given by the Bloch-Horowitz (BH) equation is evaluated for various shell-model oscillator spaces. The results are applied to the test case of the three-body problem (triton and He3), where it is s