ﻻ يوجد ملخص باللغة العربية
Application of the convergent close-coupling (CCC) method to electron-impact ionization of the ground state of atomic hydrogen is considered at incident energies of 15.6, 17.6, 20, 25, 27.2, 30, 54.4, 150 and 250 eV. Total through to fully differential cross sections are presented. Following the analysis of Stelbovics [submitted to Phys. Rev. Lett. (physics/9905020)] the equal-energy sharing cross sections are calculated using a solely coherent combination of total-spin-dependent ionization amplitudes, which are found to be simply a factor of two greater than the incoherent combination suggested by Bray and Fursa [1996 Phys. Rev. A {bf 54}, 2991]. As a consequence, the CCC theory is particularly suited to the equal-energy-sharing kinematical region, and is able to obtain convergent absolute scattering amplitudes, fully ab initio. This is consistent with the step-function hypothesis of Bray [1997 Phys. Rev. Lett. {bf 78}, 4721], and indicates that at equal-energy-sharing the CCC amplitudes converge to half the step size. Comparison with experiment is satisfactory in some cases and substantial discrepancies are identified in others. The discrepancies are generally unpredictable and some internal inconsistencies in the experimental data are identified. Accordingly, new (e,2e) measurements are requested.
The convergent close-coupling method is applied to the calculation of fully differential cross sections for ionization of atomic hydrogen by 15.6 eV electrons. We find that even at this low energy the method is able to yield predictive results with s
We study the electron-impact induced ionization of O$_{2}$ from threshold to 120 eV using the electron spectroscopy method. Our approach is simple in concept and embodies the ion source with a collision chamber and a mass spectrometer with a quadrupl
The contribution to electron-impact ionization cross sections from excitations to high-nl shells and a consequent autoionization is investigated. We perform relativistic subconfiguration-average and detailed level-to-level calculations for this proce
The electron impact ionization of atomic hydrogen is calculated for incident elrctron energy 76.46 eV. The Hartree-Fock approximation is used to calculate the initial state which includes both bound and continum wave functions. The final state contin
We present experimental data on the non-adiabatic strong field ionization of atomic hydrogen using elliptically polarized femtosecond laser pulses at a central wavelength of 390 nm. Our measured results are in very good agreement with a numerical sol