ﻻ يوجد ملخص باللغة العربية
We study the electron-impact induced ionization of O$_{2}$ from threshold to 120 eV using the electron spectroscopy method. Our approach is simple in concept and embodies the ion source with a collision chamber and a mass spectrometer with a quadruple filter as a selector for the product ions. The combination of these two devices makes it possible to unequivocally collect all energetic fragment ions formed in ionization and dissociative processes and to detect them with known efficiency. The ion source allows to vary and tune the electron-impact ionization energy and the target-gas pressure. We demonstrate that for obtaining reliable results of cross sections for inelastic processes and determining mechanisms for the formation of O$^{+}$($^{4}S,^2{D},^2{P}$) ions, it is crucial to control the electron-impact energy for production of ion and the pressure in the ion source. A comparison of our results with other experimental and theoretical data shows good agreement and proves the validity of our approach.
The convergent close-coupling method is applied to the calculation of fully differential cross sections for ionization of atomic hydrogen by 15.6 eV electrons. We find that even at this low energy the method is able to yield predictive results with s
Application of the convergent close-coupling (CCC) method to electron-impact ionization of the ground state of atomic hydrogen is considered at incident energies of 15.6, 17.6, 20, 25, 27.2, 30, 54.4, 150 and 250 eV. Total through to fully differenti
Electron-impact direct double ionization (DDI) process is studied as a sequence of two and three step processes. Contribution from ionization-ionization, ionization-excitation-ionization, and excitation-ionization-ionization processes is taken into a
The contribution to electron-impact ionization cross sections from excitations to high-nl shells and a consequent autoionization is investigated. We perform relativistic subconfiguration-average and detailed level-to-level calculations for this proce
Electron-impact ionization of lithium is studied using the convergent close-coupling (CCC) method at 25.4 and 54.4 eV. Particular attention is paid to the spin-dependence of the ionization cross sections. Convergence is found to be more rapid for the