ﻻ يوجد ملخص باللغة العربية
The convergent close-coupling method is applied to the calculation of fully differential cross sections for ionization of atomic hydrogen by 15.6 eV electrons. We find that even at this low energy the method is able to yield predictive results with small uncertainty. As a consequence we suspect that the experimental normalization at this energy is approximately a factor of two too high.
Application of the convergent close-coupling (CCC) method to electron-impact ionization of the ground state of atomic hydrogen is considered at incident energies of 15.6, 17.6, 20, 25, 27.2, 30, 54.4, 150 and 250 eV. Total through to fully differenti
We study the electron-impact induced ionization of O$_{2}$ from threshold to 120 eV using the electron spectroscopy method. Our approach is simple in concept and embodies the ion source with a collision chamber and a mass spectrometer with a quadrupl
Multiphoton ionization provides a clear window into the nature of electron correlations in the helium atom. In the present study, the final state energy range extends up to the region near the $N=2$ and $N=3$ ionization thresholds, where two-photon i
The electron impact ionization of atomic hydrogen is calculated for incident elrctron energy 76.46 eV. The Hartree-Fock approximation is used to calculate the initial state which includes both bound and continum wave functions. The final state contin
We present experimental data on the non-adiabatic strong field ionization of atomic hydrogen using elliptically polarized femtosecond laser pulses at a central wavelength of 390 nm. Our measured results are in very good agreement with a numerical sol