ﻻ يوجد ملخص باللغة العربية
The MOST (Microvariability & Oscillations of STars) satellite obtains ultraprecise photometry from space with high sampling rates and duty cycles. Astronomical photometry or imaging missions in low Earth orbits, like MOST, are especially sensitive to scattered light from Earthshine, and all these missions have a common need to extract target information from voluminous data cubes. They consist of upwards of hundreds of thousands of two-dimensional CCD frames (or sub-rasters) containing from hundreds to millions of pixels each, where the target information, superposed on background and instrumental effects, is contained only in a subset of pixels (Fabry Images, defocussed images, mini-spectra). We describe a novel reduction technique for such data cubes: resolving linear correlations of target and background pixel intensities. This stepwise multiple linear regression removes only those target variations which are also detected in the background. The advantage of regression analysis versus background subtraction is the appropriate scaling, taking into account that the amount of contamination may differ from pixel to pixel. The multivariate solution for all pairs of target/background pixels is minimally invasive of the raw photometry while being very effective in reducing contamination due to, e.g., stray light. The technique is tested and demonstrated with both simulated oscillation signals and real MOST photometry.
readPTU is a python package designed to analyze time-correlated single-photon counting data. The use of the library promotes the storage of the complete time arrival information of the photons and full flexibility in post-processing data for analysis
A stroboscope designed to observe pulsars in the optical spectrum is presented. The absolute phase of the stroboscope is synchronized to better than 2.5 microseconds with the known radio ephemerides for a given pulsar. The absolute timing is provided
Identifying frequencies with low signal-to-noise ratios in time series of stellar photometry and spectroscopy, and measuring their amplitude ratios and peak widths accurately, are critical goals for asteroseismology. These are also challenges for tim
Analyzing data from paleoclimate archives such as tree rings or lake sediments offers the opportunity of inferring information on past climate variability. Often, such data sets are univariate and a proper reconstruction of the systems higher-dimensi
Manifold-learning techniques are routinely used in mining complex spatiotemporal data to extract useful, parsimonious data representations/parametrizations; these are, in turn, useful in nonlinear model identification tasks. We focus here on the case