ﻻ يوجد ملخص باللغة العربية
Manifold-learning techniques are routinely used in mining complex spatiotemporal data to extract useful, parsimonious data representations/parametrizations; these are, in turn, useful in nonlinear model identification tasks. We focus here on the case of time series data that can ultimately be modelled as a spatially distributed system (e.g. a partial differential equation, PDE), but where we do not know the space in which this PDE should be formulated. Hence, even the spatial coordinates for the distributed system themselves need to be identified - to emerge from - the data mining process. We will first validate this emergent space reconstruction for time series sampled without space labels in known PDEs; this brings up the issue of observability of physical space from temporal observation data, and the transition from spatially resolved to lumped (order-parameter-based) representations by tuning the scale of the data mining kernels. We will then present actual emergent space discovery illustrations. Our illustrative examples include chimera states (states of coexisting coherent and incoherent dynamics), and chaotic as well as quasiperiodic spatiotemporal dynamics, arising in partial differential equations and/or in heterogeneous networks. We also discuss how data-driven spatial coordinates can be extracted in ways invariant to the nature of the measuring instrument. Such gauge-invariant data mining can go beyond the fusion of heterogeneous observations of the same system, to the possible matching of apparently different systems.
A method for correcting for detector smearing effects using machine learning techniques is presented. Compared to the standard approaches the method can use more than one reconstructed variable to infere the value of the unsmeared quantity on event b
Data mining is routinely used to organize ensembles of short temporal observations so as to reconstruct useful, low-dimensional realizations of an underlying dynamical system. In this paper, we use manifold learning to organize unstructured ensembles
China Spallation Neutron Source (CSNS) is the first high-performance pulsed neutron source in China, which will meet the increasing fundamental research and technique applications demands domestically and overseas. A new distributed data processing a
An effective modeling method for nonlinear distributed parameter systems (DPSs) is critical for both physical system analysis and industrial engineering. In this Rapid Communication, we propose a novel DPS modeling approach, in which a high-order non
Data-driven prediction and physics-agnostic machine-learning methods have attracted increased interest in recent years achieving forecast horizons going well beyond those to be expected for chaotic dynamical systems. In a separate strand of research