ترغب بنشر مسار تعليمي؟ اضغط هنا

Results from a Prototype Permanent Magnet Dipole-Quadrupole Hybrid for the PEP-II B-Factory

59   0   0.0 ( 0 )
 نشر من قبل Zack Wolf
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe the construction of a prototype hybrid permanent magnet dipole and quadruple. The magnet consists of two concentric rings of SmCo magnetic material 5 cm in length. The outer ring is made of 16 uniformly magnetized blocks assembled as a Halbach dipole and the inner ring has 32 blocks oriented in a similar fashion so as to generate a quadruple field. The resultant superimposed field is an offset quadruple field which allows us to center the field on the high-energy beam in the interaction region of the PEPII B factory. The dipole blocks are glued to the inside surface of an outer support collar and the quadruple blocks are held in a fixture that allows radial adjustment of the blocks prior to potting the entire assembly with epoxy. An extensive computer model of the magnet has been made and from this model we developed a tuning algorithm that allowed us to greatly reduce the n=3-17 harmonics of the magnet.



قيم البحث

اقرأ أيضاً

High gradient quadrupoles are necessary for different applications such as laser plasma acceleration, colliders, and diffraction limited light sources. Permanent magnet quadrupoles provide a higher field strength and compactness than conventional ele ctro-magnets. An original design of permanent magnet based quadrupole (so-called QUAPEVA), composed of a Halbach ring placed in the center with a bore radius of 6 mm and surrounded by four permanent magnet cylinders capable of providing a gradient of 210 T/m, is presented. The design of the QUAPEVAs, including magnetic simulation modeling, and mechanical issues are reported. Magnetic measurements of seven systems of different lengths are presented and confirmed the theoretical expectations. The variation of the magnetic center while changing the gradient strength is +/- 10 micrometer. A triplet of three QUAPEVA magnets are used to focus a beam with large energy spread and high divergence that is generated by Laser Plasma Acceleration source for a free electron laser demonstration.
189 - D.Cesar , J.Maxson , P.Musumeci 2016
We present the results of an experiment where a short focal length (~ 1.3 cm) permanent magnet electron lens is used to image micron-size features of a metal sample in a single shot, using an ultra- high brightness ps-long 4 MeV electron beam from a radiofrequency photoinjector. Magnifcation ratios in excess of 30x were obtained using a triplet of compact, small gap (3.5 mm), Halbach-style permanent magnet quadrupoles with nearly 600 T/m field gradients. These results pave the way to- wards single shot time-resolved electron microscopy and open new opportunities in the applications of high brightness electron beams.
The International Linear Collider and other proposed high energy e+ e- machines aim to measure with unprecedented precision Standard Model quantities and new, not yet discovered phenomena. One of the main requirements for achieving this goal is a mea surement of the incident beam energy with an uncertainty close to 1e-4. This article presents the analysis of data from a prototype energy spectrometer commissioned in 2006--2007 in SLACs End Station A beamline. The prototype was a 4-magnet chicane equipped with beam position monitors measuring small changes of the beam orbit through the chicane at different beam energies. A single bunch energy resolution close to 5e-4 was measured, which is satisfactory for most scenarios. We also report on the operational experience with the chicane-based spectrometer and suggest ways of improving its performance.
The PEP-II interaction region is designed to accommodate asymmetric beam energies, head-on collisions, small bunch spacing and provide low beta* for high luminosity. Local correction schemes are implemented to compensate non-linear chromaticity from the IP doublets as well as coupling, orbit and focusing effects from the 6 Tm asymmetric detector solenoid. The main IR optics features and local correction schemes are presented. MAD code is used for the optics calculations.
136 - Y. Nosochkov , M. Biagini , Y. Cai 2000
The successful commissioning and operation of the PEP-II asymmetric e+e- collider motivated further studies to increase luminosity. In this paper, we discuss a modification of the PEP-II lattice to reduce the vertical beta function at the Interaction Point (IP) from the design value of 1.5cm to 1.0cm. This could potentially reduce the colliding beam size, increase particle density at the IP and the probability of beam-beam interactions. In this paper, we outline the optics modifications, discuss tracking simulations, and overview machine implementation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا