ترغب بنشر مسار تعليمي؟ اضغط هنا

Variable high gradient permanent magnet quadrupole (QUAPEVA)

133   0   0.0 ( 0 )
 نشر من قبل Amin Ghaith
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

High gradient quadrupoles are necessary for different applications such as laser plasma acceleration, colliders, and diffraction limited light sources. Permanent magnet quadrupoles provide a higher field strength and compactness than conventional electro-magnets. An original design of permanent magnet based quadrupole (so-called QUAPEVA), composed of a Halbach ring placed in the center with a bore radius of 6 mm and surrounded by four permanent magnet cylinders capable of providing a gradient of 210 T/m, is presented. The design of the QUAPEVAs, including magnetic simulation modeling, and mechanical issues are reported. Magnetic measurements of seven systems of different lengths are presented and confirmed the theoretical expectations. The variation of the magnetic center while changing the gradient strength is +/- 10 micrometer. A triplet of three QUAPEVA magnets are used to focus a beam with large energy spread and high divergence that is generated by Laser Plasma Acceleration source for a free electron laser demonstration.



قيم البحث

اقرأ أيضاً

We describe the construction of a prototype hybrid permanent magnet dipole and quadruple. The magnet consists of two concentric rings of SmCo magnetic material 5 cm in length. The outer ring is made of 16 uniformly magnetized blocks assembled as a Ha lbach dipole and the inner ring has 32 blocks oriented in a similar fashion so as to generate a quadruple field. The resultant superimposed field is an offset quadruple field which allows us to center the field on the high-energy beam in the interaction region of the PEPII B factory. The dipole blocks are glued to the inside surface of an outer support collar and the quadruple blocks are held in a fixture that allows radial adjustment of the blocks prior to potting the entire assembly with epoxy. An extensive computer model of the magnet has been made and from this model we developed a tuning algorithm that allowed us to greatly reduce the n=3-17 harmonics of the magnet.
189 - D.Cesar , J.Maxson , P.Musumeci 2016
We present the results of an experiment where a short focal length (~ 1.3 cm) permanent magnet electron lens is used to image micron-size features of a metal sample in a single shot, using an ultra- high brightness ps-long 4 MeV electron beam from a radiofrequency photoinjector. Magnifcation ratios in excess of 30x were obtained using a triplet of compact, small gap (3.5 mm), Halbach-style permanent magnet quadrupoles with nearly 600 T/m field gradients. These results pave the way to- wards single shot time-resolved electron microscopy and open new opportunities in the applications of high brightness electron beams.
Short period, high field undulators are used to produce hard X-rays on synchrotron radiation based storage ring facilities of intermediate energy and enable short wavelength Free Electron Laser. Cryogenic permanent magnet undulators take benefit from improved magnetic properties of RE2Fe14B (Rare Earth based magnets) at low temperatures for achieving short period, high magnetic field and high coercivity. Using Pr2Fe14B instead of Nd2Fe14B, which is generally employed for undulators, avoids the limitation caused by the Spin Reorientation Transition phenomenon, and simplifies the cooling system by allowing the working temperature of the undulator to be directly at the liquid nitrogen one (77 K). We describe here the development of a full scale (2 m), 18 mm period Pr2Fe14B cryogenic permanent magnet undulator (U18). The design, construction and optimization, as well as magnetic measurements and shimming at low temperature are presented. The commissioning and operation of the undulator with the electron beam and spectrum measurement using the Nanoscopmium beamline at SOLEIL are also reported.
A compact adjustable focusing system for a 2 MeV H- RFQ Linac is designed, constructed and tested based on four permanent magnet quadrupoles (PMQ). A PMQ model is realised using finite element simulations, providing an integrated field gradient of 2. 35 T with a maximal field gradient of 57 T/m. A prototype is constructed and the magnetic field is measured, demonstrating good agreement with the simulation. Particle track simulations provide initial values for the quadrupole positions. Accordingly, four PMQs are constructed and assembled on the beam line, their positions are then tuned to obtain a minimal beam spot size of (1.2 x 2.2) mm^2 on target. This paper describes an adjustable PMQ beam line for an external ion beam. The novel compact design based on commercially available NdFeB magnets allows high flexibility for ion beam applications.
The impact of granular microstructure in permanent magnets on eddy current losses are investigated. A numerical homogenization procedure for electrical conductivity is defined. Then, an approximated simple analytical model for the homogenized conduct ivity able to capture the main features of the geometrical and material dependences is derived. Finally eddy current losses analytical calculations are given, and the two asymptotic expressions for losses in the stationary conduction limit and advanced skin effect limit are derived and discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا