ﻻ يوجد ملخص باللغة العربية
The PEP-II interaction region is designed to accommodate asymmetric beam energies, head-on collisions, small bunch spacing and provide low beta* for high luminosity. Local correction schemes are implemented to compensate non-linear chromaticity from the IP doublets as well as coupling, orbit and focusing effects from the 6 Tm asymmetric detector solenoid. The main IR optics features and local correction schemes are presented. MAD code is used for the optics calculations.
At present, the PEP-II bunch length and vertical beta function at the Interaction Point (IP) are about of the same size. To increase luminosity, it is planned to gradually reduce the IP beta function. For the maximum effect, bunch length has to be al
We present a novel method to characterize the e+/- phase space at the IP of the SLAC B-factory, that combines single-beam measurements with a detailed mapping of luminous-region observables. Transverse spot sizes are determined in the two rings with
The successful commissioning and operation of the PEP-II asymmetric e+e- collider motivated further studies to increase luminosity. In this paper, we discuss a modification of the PEP-II lattice to reduce the vertical beta function at the Interaction
Beam-beam simulations predict that PEP-II luminosity can be increased by operating the horizontal betatron tune near and above a half-integer resonance. However, effects of the resonance and its synchrotron sidebands significantly enhance betatron an
We describe the construction of a prototype hybrid permanent magnet dipole and quadruple. The magnet consists of two concentric rings of SmCo magnetic material 5 cm in length. The outer ring is made of 16 uniformly magnetized blocks assembled as a Ha