ﻻ يوجد ملخص باللغة العربية
The irreducible representations of the Lie algebra ${frak su}$(3) describe rotational bands in the context of the nuclear shell and interacting boson models. The density matrices associated with ${frak su}$(3) provide an alternative theoretical framework for obtaining these bands. The ${frak su}$(3) density matrix formulation is mathematically simpler than representation theory, yet it yields similar results. Bands are solutions to a system of polynomial equations defined by the quadratic and cubic ${frak su}$(3) Casimirs. Analytic solutions are found in many physically important cases including rotation about principal axes and spheroids. Numerical solutions are reported in other cases including tilted rotors. The physics of rotational bands is more transparent in the presented formalism. In representation theory bands terminate because the space is finite-dimensional. In ${frak su}$(3) density matrix theory bands terminate when faster rotation produces a spheroid rotating around its symmetry axis.
Treating the strange quark mass as a heavy scale compared to the light quark mass, we perform a matching of the nucleon mass in the SU(3) sector to the two-flavor case in covariant baryon chiral perturbation theory. The validity of the $19$ low-energ
For a $Q cdot Q$ interaction the energy weighted sum rule for isovector orbital magnetic dipole transitions is proportional to the difference $sum B(E2, isoscalar) - sum B(E2, isovector)$, not just to $sum B(E2, physical)$. This fact is important in
A group of fuzzy spacetime with SU(3) isometry is studied at the two loop level in IIB matrix model. It consists of spacetime from 4 to 6 dimensions, namely from CP2 to SU(3)/U(1)x U(1). The effective action scales in a universal manner in the large
We investigate the quantum entanglement entropy for the four-dimensional Euclidean SU(3) gauge theory. We present the first non-perturbative calculation of the entropic $c$-function ($C(l)$) of SU(3) gauge theory in lattice Monte Carlo simulation usi
We study baryon-baryon scattering by applying time-ordered perturbation theory to the manifestly Lorentz-invariant formulation of SU(3) baryon chiral perturbation theory. We derive the corresponding diagrammatic rules paying special attention to comp