ﻻ يوجد ملخص باللغة العربية
For a $Q cdot Q$ interaction the energy weighted sum rule for isovector orbital magnetic dipole transitions is proportional to the difference $sum B(E2, isoscalar) - sum B(E2, isovector)$, not just to $sum B(E2, physical)$. This fact is important in ensuring that one gets the correct limit as one goes to nuclei, some of which are far from stability, for which one shell (neutron or proton) is closed. In $0p$ shell calculations for the even-even Be isotopes it is shown that the Fermion SU(3) model and Boson SU(3) model give different results for the energy weighted scissors mode strengths.
Rotational $SU(3)$ algebraic symmetry continues to generate new results in the shell model (SM). Interestingly, it is possible to have multiple $SU(3)$ algebras for nucleons occupying an oscillator shell $eta$. Several different aspects of the multip
The irreducible representations of the Lie algebra ${frak su}$(3) describe rotational bands in the context of the nuclear shell and interacting boson models. The density matrices associated with ${frak su}$(3) provide an alternative theoretical frame
Treating the strange quark mass as a heavy scale compared to the light quark mass, we perform a matching of the nucleon mass in the SU(3) sector to the two-flavor case in covariant baryon chiral perturbation theory. The validity of the $19$ low-energ
Decoherence dynamics of quarkonia is studied in the high-temperature deconfined phase of SU($N_c$) gauge theories. In particular, we analyze the symmetry properties of SU($N_c$) stochastic potential model and find a novel event-by-event symmetry for
The space-time dynamics and pion-HBT radii in central heavy ion-collisions at CERN-SPS and BNL-RHIC are investigated within a hydrodynamic simulation. The dependence of the dynamics and the HBT-parameters on the EoS is studied with different parametr