ﻻ يوجد ملخص باللغة العربية
Treating the strange quark mass as a heavy scale compared to the light quark mass, we perform a matching of the nucleon mass in the SU(3) sector to the two-flavor case in covariant baryon chiral perturbation theory. The validity of the $19$ low-energy constants appearing in the octet baryon masses up to next-to-next-to-next-to-leading order~cite{Ren:2014vea} is supported by comparing the effective parameters (the combinations of the $19$ couplings) with the corresponding low-energy constants in the SU(2) sector~cite{Alvarez-Ruso:2013fza}. In addition, it is shown that the dependence of the effective parameters and the pion-nucleon sigma term on the strange quark mass is relatively weak around its physical value, thus providing support to the assumption made in Ref.~cite{Alvarez-Ruso:2013fza}.
We calculate the lambda-nucleon scattering phase shifts and mixing angles by applying time-ordered perturbation theory to the manifestly Lorentz-invariant formulation of SU(3) baryon chiral perturbation theory. Scattering amplitudes are obtained by s
The Standard Model of particle physics, augmented with neutrino mixing, is at least very nearly the complete theory of interactions of known particles at energies accessible to Nature on Earth. Candidate effective theories of nuclear structure must t
We study baryon-baryon scattering by applying time-ordered perturbation theory to the manifestly Lorentz-invariant formulation of SU(3) baryon chiral perturbation theory. We derive the corresponding diagrammatic rules paying special attention to comp
Decoherence dynamics of quarkonia is studied in the high-temperature deconfined phase of SU($N_c$) gauge theories. In particular, we analyze the symmetry properties of SU($N_c$) stochastic potential model and find a novel event-by-event symmetry for
We investigate the quark mass dependence of meson and baryon masses obtained from 2+1 flavor dynamical quark simulations performed by the PACS-CS Collaboration. With the use of SU(2) and SU(3) chiral perturbation theories up to NLO, we examine the ch