ترغب بنشر مسار تعليمي؟ اضغط هنا

Investigation of the 6He cluster structures

74   0   0.0 ( 0 )
 نشر من قبل Giot Lydie Miss
 تاريخ النشر 2005
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The 4He+2n and t+t clustering of the 6He ground state were investigated by means of the transfer reaction 6He(p,t)4He at 25 MeV/nucleon. The experiment was performed in inverse kinematics at GANIL with the SPEG spectrometer coupled to the MUST array. Experimental data for the transfer reaction were analyzed by a DWBA calculation including the two neutrons and the triton transfer. The couplings to the 6He --> 4He + 2n breakup channels were taken into account with a polarization potential deduced from a coupled-discretized-continuum channels analysis of the 6He+1H elastic scattering measured at the same time. The influence on the calculations of the 4He+t exit potential and of the triton sequential transfer is discussed. The final calculation gives a spectroscopic factor close to one for the 4He+2n configuration as expected. The spectroscopic factor obtained for the t+t configuration is much smaller than the theoretical predictions.



قيم البحث

اقرأ أيضاً

We have performed precision laser spectroscopy on individual 6He (t1/2 = 0.8 s) atoms confined and cooled in a magneto-optical trap, and measured the isotope shift between 6He and 4He to be 43,194.772 +/- 0.056 MHz for the 2 3S1 - 3 3P2 transition. B ased on this measurement and atomic theory, the nuclear charge radius of 6He is determined, for the first time in a method independent of nuclear models, to be 2.054 +/- 0.014 fm. The result is compared with the values predicted by a number of nuclear structure calculations, and tests their ability to characterize this loosely bound, halo nucleus.
57 - A.M. Moro , K. Rusek , J.M. Arias 2007
The structure of the three-body Borromean nucleus 6He is approximated by a two-body di-neutron cluster model. The binding energy of the 2n-alpha system is determined to obtain a correct description of the 2n-alpha coordinate, as given by a realistic three-body model calculation. The model is applied to describe the break-up effects in elastic scattering of 6He on several targets, for which experimental data exist. We show that an adequate description of the di-neutron-core degree of freedom permits a fairly accurate description of the elastic scattering of 6He on different targets.
The 6He nucleus is an ideal candidate to study the weak interaction. To this end we have built a high-intensity source of 6He delivering ~10^10 atoms/s to experiments. Taking full advantage of that available intensity we have performed a high-precisi on measurement of the 6He half-life that directly probes the axial part of the nuclear Hamiltonian. Currently, we are preparing a measurement of the beta-neutrino angular correlation in 6He beta decay that will allow to search for new physics beyond the Standard Model in the form of tensor currents.
An experiment for $p(^{14}rm{C}$,$^{14}rm{C}^{*}rightarrow^{10}rm{Be}+alpha)mathit{p}$ inelastic excitation and decay was performed in inverse kinematics at a beam energy of 25.3 MeV/u. A series of $^{14}rm{C}$ excited states, including a new one at 18.3(1) MeV, were observed which decay to various states of the final nucleus of $^{10}rm{Be}$. A specially designed telescope-system, installed around the zero degree, played an essential role in detecting the resonant states near the $alpha$-separation threshold. A state at 14.1(1) MeV is clearly identified, being consistent with the predicted band-head of the molecular rotational band characterized by the $pi$-bond linear-chain-configuration. Further clarification of the properties of this exotic state is suggested by using appropriate reaction tools.
Studies of 6He beta decay along with tritium can play an important role in testing ab-initio nuclear wave-function calculations and may allow for fixing low-energy constants in effective field theories. Here, we present an improved determination of t he 6He half-life to a relative precision of 3x10^(-4). Our value of 806.89 pm 0.11(stat)^{+0.23}_{-0.19}(syst) ms resolves a major discrepancy between previous measurements. Calculating the statistical rate function we determined the ft-value to be 803.04 ^{+0.26}_{-0.23} s. The extracted Gamow-Teller matrix element agrees within a few percent with ab-initio calculations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا