ﻻ يوجد ملخص باللغة العربية
The 6He nucleus is an ideal candidate to study the weak interaction. To this end we have built a high-intensity source of 6He delivering ~10^10 atoms/s to experiments. Taking full advantage of that available intensity we have performed a high-precision measurement of the 6He half-life that directly probes the axial part of the nuclear Hamiltonian. Currently, we are preparing a measurement of the beta-neutrino angular correlation in 6He beta decay that will allow to search for new physics beyond the Standard Model in the form of tensor currents.
We review the current status of the radioisotopes program at the Soreq Applied Research Accelerator Facility (SARAF), where we utilize an electrostatic-ion-beam trap and a magneto-optical trap for studying the nuclear $beta$-decay from trapped radioa
The strong interaction of antikaons (K-) with nucleons and nuclei in the low energy regime represents an active research field connected intrinsically with few-body physics. There are important open questions like the question of antikaon nuclear bou
The strong interaction of antikaons with nucleons and nuclei in the low-energy regime represents an active research field connected intrinsically with few-body physics. There are important open questions like the question of antikaon nuclear bound st
Studies of 6He beta decay along with tritium can play an important role in testing ab-initio nuclear wave-function calculations and may allow for fixing low-energy constants in effective field theories. Here, we present an improved determination of t
Trapped radioactive atoms present exciting opportunities for the study of fundamental interactions and symmetries. For example, detecting beta decay in a trap can probe the minute experimental signal that originates from possible tensor or scalar ter