ترغب بنشر مسار تعليمي؟ اضغط هنا

Investigation of the Angular Dependence of the Tensor Analyzing Power of 9 Gev/C Deuteron Breakup

50   0   0.0 ( 0 )
 نشر من قبل Ladygin Vladimir
 تاريخ النشر 2004
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

An angular dependence of the tensor analyzing power of the breakup of polarized deuterons at 9 GeV/$c$ has been investigated. The measurements have been made on hydrogen and carbon targets at angles in the range from 85 to 160 mr. The data obtained are analyzed within the framework of the light-front dynamics using the deuteron wave functions for Paris and Bonn CD potentials, and the relativistic deuteron wave function by Karmanov et al. The experimental data are in rough agreement with calculations with the use of Karmanovs deuteron wave function.



قيم البحث

اقرأ أيضاً

The Ayy data for deuteron inclusive breakup off hydrogen and carbon at a deuteron momentum of 9.0 GeV/c and large Pt of emitted protons are presented. The large values of Ayy independent of the target mass reflect the sensitivity of the data to the d euteron spin structure. The data obtained at fixed $x$ and plotted versus Pt clearly demonstrate the dependence of the deuteron spin structure at short internucleonic distances on two variables. The data are compared with the calculations using Paris, CD-Bonn and Karmanovs deuteron wave functions.
The angular dependence of the tensor Ayy and vector Ay analyzing powers in the inelastic scattering of deuterons with a momentum of 9.0 GeV/c on hydrogen and carbon have been measured. The range of measurements corresponds to the baryonic resonance e xcitation with masses 2.2--2.6 GeV/c^2. The Ayy data being in good agreement with the previous results demonstrate an approximate $t$ scaling up to -1.5 (GeV/c)^2. The large values of A_y show a significant role of the spin-dependent part of the elementary amplitude of the NN->NN* reaction. The results of the experiment are compared with model predictions of the plane-wave impulse approximation.
The structure of the unbound nuclei 9He, 10Li and 13Be has been explored using breakup and proton-knockout from intermediate energy 11Be and 14,15B beams. In the case of both N=7 isotones, virtual s-wave strength is observed near threshold together w ith a higher-lying resonance. A very narrow structure at threshold in the 12Be+n relative energy spectrum is demonstrated to arise from the decay of the 14Be*(2+), discounting earlier reports of a strong virtual s-wave state in 13Be.
High precision vector and tensor analyzing powers of elastic deuteron-proton d+p scattering have been measured at intermediate energies to investigate effects of three-nucleon forces (3NF). Angular distribution in the range of 70-120 degree in the ce nter-of mass frame for incident-deuteron energies of 130 and 180 MeV were obtained using the RIKEN facility. The beam polarization was unambiguously determined by measuring the 12C(d,alpha)10B(2+) reaction at 0 degree. Results of the measurements are compared with state-of-the-art three-nucleon calculations. The present modeling of nucleon-nucleon forces and its extension to the three-nucleon system is not sufficient to describe the high precision data consistently and requires, therefore, further investigation.
Experimental data from the reaction of an 8.0 GeV/c pi- beam incident on a 197Au target have been analyzed in order to investigate the integrated breakup time scale for hot residues. Alpha-particle energy spectra and particle angular distributions su pported by a momentum tensor analysis suggest that at large excitation energy, above 3-5 MeV/nucleon, light-charged particles are emitted prior to or at the same time as the emission of the heavy fragments. Comparison with the SMM and GEMINI models is presented. A binary fission-like mechanism fits the experimental data at low excitation energies, but seems unable to reproduce the data at excitation energies above 3-5 MeV/nucleon.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا