ترغب بنشر مسار تعليمي؟ اضغط هنا

Breakup time scale studied in the 8 GeV/c pi- + 197Au reaction

263   0   0.0 ( 0 )
 نشر من قبل L. Pienkowski
 تاريخ النشر 2000
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Experimental data from the reaction of an 8.0 GeV/c pi- beam incident on a 197Au target have been analyzed in order to investigate the integrated breakup time scale for hot residues. Alpha-particle energy spectra and particle angular distributions supported by a momentum tensor analysis suggest that at large excitation energy, above 3-5 MeV/nucleon, light-charged particles are emitted prior to or at the same time as the emission of the heavy fragments. Comparison with the SMM and GEMINI models is presented. A binary fission-like mechanism fits the experimental data at low excitation energies, but seems unable to reproduce the data at excitation energies above 3-5 MeV/nucleon.

قيم البحث

اقرأ أيضاً

Fragment kinetic energy spectra for reactions induced by 8.0 GeV/c $rm{pi^-}$ beams incident on a $rm{^{197}}$Au target have been analyzed in order to deduce the possible existence and influence of thermal expansion. The average fragment kinetic ener gies are observed to increase systematically with fragment charge but are nearly independent of excitation energy. Comparison of the data with statistical multifragmentation models indicates the onset of extra collective thermal expansion near an excitation energy of E*/A $rm{approx}$ 5 MeV. However, this effect is weak relative to the radial expansion observed in heavy-ion-induced reactions, consistent with the interpretation that the latter expansion may be driven primarily by dynamical effects such as compression/decompression.
We have measured an inclusive missing-mass spectrum of the $d(pi^+, K^+)$ reaction at the pion incident momentum of 1.69 GeV/$c$ at the laboratory scattering angles between 2$^circ$ and 16$^circ$ with the missing-mass resolution of 2.7 $pm$ 0.1 MeV/$ c^2$ (FWHM) at the missing mass of 2.27 GeV/$c^{2}$. In this Letter, we first try to understand the spectrum as a simple quasi-free picture based on several known elementary cross sections, considering the neutron/proton Fermi motion in deuteron. While gross spectrum structures are well understood in this picture, we have observed two distinct deviations; one peculiar enhancement at 2.13 GeV/$c^2$ is due to the $Sigma N$ cusp, and the other notable feature is a shift of a broad bump structure, mainly originating from hyperon resonance productions of $Lambda(1405)$ and $Sigma(1385)^{+/0}$, by about 22.4 $pm$ 0.4 (stat.) $^{+2.7}_{-1.7}$ (syst.) MeV/$c^2$ toward the low-mass side, which is calculated in the kinematics of a proton at rest as the target.
68 - R.Najman , R.Planeta , A.Sochocka 2015
Data from the experiment on the 197Au + 197Au reaction at 23 AMeV are analyzed with an aim to find signatures of exotic nuclear configurations such as toroid-shaped objects. The experimental data are compared with predictions of the ETNA code dedicat ed to look for such configurations and with the QMD model. A novel criterion of selecting events possibly resulting from the formation of exotic freeze-out configurations, the efficiency factor, is tested. Comparison between experimental data and model predictions may indicate for the formation of flat/toroidal nuclear systems.
257 - H.Sugimura , M.Agnello , J.K.Ahn 2013
We have carried out an experiment to search for a neutron-rich hypernucleus, $^6_{Lambda}$H, by the $^6$Li($pi^-,K^+$) reaction at $p_{pi^-}$ =1.2 GeV/$c$. The obtained missing mass spectrum with an estimated energy resolution of 3.2 MeV (FWHM) showe d no peak structure corresponding to the $^6_{Lambda}$H hypernucleus neither below nor above the $^4_{Lambda}$H$+2n$ particle decay threshold. An upper limit of the production cross section for the bound $^6_{Lambda}$H hypernucleus was estimated to be 1.2 nb/sr at 90% confidence level.
We have observed a $K^-pp$-like structure in the $d(pi^+,K^+)$ reaction at 1.69 GeV/$c$. In this reaction $Lambda(1405)$ hyperon resonance is expected to be produced as a doorway to form the $K^-pp$ through the $Lambda^*prightarrow K^-pp$ process. Ho wever, most of the produced $Lambda(1405)$s would escape from deuteron without secondary reactions. Therefore, coincidence of high-momentum ($>$ 250~MeV/$c$) proton(s) in large emission angles ($39^circ<theta_{lab.}<122^circ$) was requested to enhance the signal-to-background ratio. A broad enhancement in the proton coincidence spectra are observed around the missing-mass of 2.27 GeV/$c^2$, which corresponds to the $K^-pp$ binding energy of 95 $^{+18}_{-17}$ (stat.) $^{+30}_{-21}$ (syst.) MeV and the width of 162 $^{+87}_{-45}$ (stat.) $^{+66}_{-78}$ (syst.) MeV.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا