ﻻ يوجد ملخص باللغة العربية
We semiclassically derive the leading off-diagonal correction to the spectral form factor of quantum systems with a chaotic classical counterpart. To this end we present a phase space generalization of a recent approach for uniformly hyperbolic systems (M. Sieber and K. Richter, Phys. Scr. T90, 128 (2001); M. Sieber, J. Phys. A: Math. Gen. 35, L613 (2002)). Our results coincide with corresponding random matrix predictions. Furthermore, we study the transition from the Gaussian orthogonal to the Gaussian unitary ensemble.
We present a semiclassical calculation of the generalized form factor which characterizes the fluctuations of matrix elements of the quantum operators in the eigenbasis of the Hamiltonian of a chaotic system. Our approach is based on some recently de
We replace a Hamiltonian by a modular Hamiltonian in the spectral form factor and the level spacing distribution function. This establishes a connection between quantities within quantum entanglement and quantum chaos. To have a universal study for q
We investigate the collective dynamics of chaotic multi-stable Duffing oscillators connected in different network topologies, ranging from star and ring networks, to scale-free networks. We estimate the resilience of such networks by introducing a va
We accomplish the complete two-loop computation of the leading-twist contribution to the photon-pion transition form factor $gamma , gamma^{ast} to pi^0$ by applying the hard-collinear factorization theorem together with modern multi-loop techniques.
Two deterministic models for Brownian motion are investigated by means of numerical simulations and kinetic theory arguments. The first model consists of a heavy hard disk immersed in a rarefied gas of smaller and lighter hard disks acting as a therm