ترغب بنشر مسار تعليمي؟ اضغط هنا

Next-to-next-to-leading-order QCD prediction for the photon-pion form factor

110   0   0.0 ( 0 )
 نشر من قبل Yao Ji
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We accomplish the complete two-loop computation of the leading-twist contribution to the photon-pion transition form factor $gamma , gamma^{ast} to pi^0$ by applying the hard-collinear factorization theorem together with modern multi-loop techniques. The resulting predictions for the form factor indicate that the two-loop perturbative correction is numerically comparable to the one-loop effect in the same kinematic domain. We also demonstrate that our results will play a key role in disentangling various models of the twist-two pion distribution amplitude thanks to the envisaged precision at Belle II.



قيم البحث

اقرأ أيضاً

An analytic coordinate-space expression for the next-to-leading order photon impact factor for small-$x$ deep inelastic scattering is calculated using the operator expansion in Wilson lines.
We present the results of our QCD analysis for non-singlet unpolarized quark distributions and structure function $F_2(x,Q^2)$ up to N$^3$LO. In this regards 4-loop anomalous dimension can be obtain from the Pade approximations. The analysis is based on the Jacobi polynomials expansion of the structure function. New parameterizations are derived for the non-singlet quark distributions for the kinematic wide range of $x$ and $Q^2$. Our calculations for non-singlet unpolarized quark distribution functions up to N$^3$LO are in good agreement with available theoretical models. The higher twist contributions of $F_2^{p,d}(x,Q^2)$ are extracted in the large $x$ region in N$^3$LO analysis. The values of $Lambda_{QCD}$ and $alpha_s(M_z^2)$ are determined.
We determine an approximate expression for the O(alpha_s^3) contribution chi_2 to the kernel of the BFKL equation, which includes all collinear and anticollinear singular contributions. This is derived using recent results on the relation between the GLAP and BFKL kernels (including running-coupling effects to all orders) and on small-x factorization schemes. We present the result in various schemes, relevant both for applications to the BFKL equation and to small-x evolution of parton distributions.
The photon impact factor for the BFKL pomeron is calculated in the next-to-leading order (NLO) approximation using the operator expansion in Wilson lines. The result is represented as a NLO $k_T$-factorization formula for the structure functions of small-$x$ deep inelastic scattering.
We present for the first time complete next-to-next-to-leading-order coefficient functions to match flavor non-singlet quark correlation functions in position space, which are calculable in lattice QCD, to parton distribution functions (PDFs). Using PDFs extracted from experimental data and our calculated matching coefficients, we predict valence-quark correlation functions that can be confronted by lattice QCD calculations. The uncertainty of our predictions is greatly reduced with higher order matching coefficients. By performing Fourier transformation, we also obtain matching coefficients for corresponding quasi-PDFs and pseudo-PDFs. Our method of calculations can be readily generalized to evaluate the matching coefficients for sea-quark and gluon correlation functions, putting the program to extract partonic structure of hadrons from lattice QCD calculations to be comparable with and complementary to that from experimental measurements.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا