ﻻ يوجد ملخص باللغة العربية
We accomplish the complete two-loop computation of the leading-twist contribution to the photon-pion transition form factor $gamma , gamma^{ast} to pi^0$ by applying the hard-collinear factorization theorem together with modern multi-loop techniques. The resulting predictions for the form factor indicate that the two-loop perturbative correction is numerically comparable to the one-loop effect in the same kinematic domain. We also demonstrate that our results will play a key role in disentangling various models of the twist-two pion distribution amplitude thanks to the envisaged precision at Belle II.
An analytic coordinate-space expression for the next-to-leading order photon impact factor for small-$x$ deep inelastic scattering is calculated using the operator expansion in Wilson lines.
We present the results of our QCD analysis for non-singlet unpolarized quark distributions and structure function $F_2(x,Q^2)$ up to N$^3$LO. In this regards 4-loop anomalous dimension can be obtain from the Pade approximations. The analysis is based
We determine an approximate expression for the O(alpha_s^3) contribution chi_2 to the kernel of the BFKL equation, which includes all collinear and anticollinear singular contributions. This is derived using recent results on the relation between the
The photon impact factor for the BFKL pomeron is calculated in the next-to-leading order (NLO) approximation using the operator expansion in Wilson lines. The result is represented as a NLO $k_T$-factorization formula for the structure functions of small-$x$ deep inelastic scattering.
We present for the first time complete next-to-next-to-leading-order coefficient functions to match flavor non-singlet quark correlation functions in position space, which are calculable in lattice QCD, to parton distribution functions (PDFs). Using