ترغب بنشر مسار تعليمي؟ اضغط هنا

Deformation surfaces, integrable systems and Chern - Simons theory

111   0   0.0 ( 0 )
 نشر من قبل Luigi Martina
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A few years ago, some of us devised a method to obtain integrable systems in (2+1)-dimensions from the classical non-Abelian pure Chern-Simons action via reduction of the gauge connection in Hermitian symmetric spaces. In this paper we show that the methods developed in studying classical non-Abelian pure Chern-Simons actions, can be naturally implemented by means of a geometrical interpretation of such systems. The Chern-Simons equation of motion turns out to be related to time evolving 2-dimensional surfaces in such a way that these deformations are both locally compatible with the Gauss-Mainardi-Codazzi equations and completely integrable. The properties of these relationships are investigated together with the most relevant consequences. Explicit examples of integrable surface deformations are displayed and discussed.



قيم البحث

اقرأ أيضاً

146 - Yuqin Yao , Yunbo Zeng 2010
Based on the Kupershmidt deformation for any integrable bi-Hamiltonian systems presented in [4], we propose the generalized Kupershmidt deformation to construct new systems from integrable bi-Hamiltonian systems, which provides a nonholonomic perturb ation of the bi-Hamiltonian systems. The generalized Kupershmidt deformation is conjectured to preserve integrability. The conjecture is verified in a few representative cases: KdV equation, Boussinesq equation, Jaulent-Miodek equation and Camassa-Holm equation. For these specific cases, we present a general procedure to convert the generalized Kupershmidt deformation into the integrable Rosochatius deformation of soliton equation with self-consistent sources, then to transform it into a $t$-type bi-Hamiltonian system. By using this generalized Kupershmidt deformation some new integrable systems are derived. In fact, this generalized Kupershmidt deformation also provides a new method to construct the integrable Rosochatius deformation of soliton equation with self-consistent sources.
KdV6 equation can be described as the Kupershmidt deformation of the KdV equation (see 2008, Phys. Lett. A 372: 263). In this paper, starting from the bi-Hamiltonian structure of the discrete integrable system, we propose a generalized Kupershmidt de formation to construct new discrete integrable systems. Toda hierarchy, Kac-van Moerbeke hierarchy and Ablowitz-Ladik hierarchy are considered. The Lax representations for these new deformed systems are presented. The generalized Kupershmidt deformation for the discrete integrable systems provides a new way to construct new discrete integrable systems.
Recently, a variety of deformed $T^{1,1}$ manifolds, with which 2D non-linear sigma models (NLSMs) are classically integrable, have been presented by Arutyunov, Bassi and Lacroix (ABL) [arXiv:2010.05573]. We refer to the NLSMs with the integrable def ormed $T^{1,1}$ as the ABL model for brevity. Motivated by this progress, we consider deriving the ABL model from a 4D Chern-Simons (CS) theory with a meromorphic one-form with four double poles and six simple zeros. We specify boundary conditions in the CS theory that give rise to the ABL model and derive the sigma-model background with target-space metric and anti-symmetric two-form. Finally, we present two simple examples 1) an anisotropic $T^{1,1}$ model and 2) a $G/H$ $lambda$-model. The latter one can be seen as a one-parameter deformation of the Guadagnini-Martellini-Mintchev model.
Based on our previous work to the Degasperis-Procesi equation (J. Phys. A 46 045205) and the integrable semi-discrete analogue of its short wave limit (J. Phys. A 48 135203), we derive an integrable semi-discrete Degasperis-Procesi equation by Hirota s bilinear method. Meanwhile, $N$-soliton solution to the semi-discrete Degasperis-Procesi equation is provided and proved. It is shown that the proposed semi-discrete Degasperis-Procesi equation, along with its $N$-soliton solution converge to ones of the original Degasperis-Procesi equation in the continuous limit.
270 - O.F. Dayi 2003
Noncommutative Maxwell-Chern-Simons theory in 3-dimensions is defined in terms of star product and noncommutative fields. Seiberg-Witten map is employed to write it in terms of ordinary fields. A parent action is introduced and the dual action is der ived. For spatial noncommutativity it is studied up to second order in the noncommutativity parameter theta. A new noncommutative Chern-Simons action is defined in terms of ordinary fields, inspired by the dual action. Moreover, a transformation between noncommuting and ordinary fields is proposed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا