ﻻ يوجد ملخص باللغة العربية
A nonperturbative regularization of UV-divergencies, caused by finite discontinuities in the field configuration, is discussed in the context of 1+1-dimensional kink models. The relationship between this procedure and the appearance of quantum copies of classical kink solutions is studied in detail and confirmed by conventional methods of soliton quantization.
We consider Lifshitz-type scalar theories with explicit breaking of the Lorentz symmetry that, in addition, exhibit anisotropic scaling laws near the ultraviolet fixed point. Using the proper time regularization method on the spatial coordinates only
On-shell methods have revitalized interest in scattering amplitudes which have, in turn, shed some much needed light on the structure of quantum field theories. These developments have been warmly embraced by the particle physics community. Less so i
UV/IR mixing is one of the most important features of noncommutative field theories. As a consequence of this coupling of the UV and IR sectors, the configuration of fields at the zero momentum limit in these theories is a very singular configuration
We review our recent proposals to dimensionally regularize the light-cone gauge string field theory.
We extend a constrained version of Implicit Regularization (CIR) beyond one loop order for gauge field theories. In this framework, the ultraviolet content of the model is displayed in terms of momentum loop integrals order by order in perturbation t