ﻻ يوجد ملخص باللغة العربية
On-shell methods have revitalized interest in scattering amplitudes which have, in turn, shed some much needed light on the structure of quantum field theories. These developments have been warmly embraced by the particle physics community. Less so in the astrophyical and cosmological contexts. As part of an effort to address this imbalance, we illustrate these methods by revisiting two classic problems in gravity: gravitational light-bending and the vDVZ discontinuity of massive gravity.
We derive new positivity bounds for scattering amplitudes in theories with a massless graviton in the spectrum in four spacetime dimensions, of relevance for the weak gravity conjecture and modified gravity theories. The bounds imply that extremal bl
Conformal supergravity amplitudes are obtained from the double-copy construction using gauge-theory amplitudes, and compared to direct calculations starting from conformal supergravity Lagrangians. We consider several different theories: minimal ${ca
The analytic structures of scattering amplitudes in gauge theory and gravity are examined on the celestial sphere. The celestial amplitudes in the two theories - computed by employing a regulated Mellin transform - can be compared at low multiplicity
A nonperturbative regularization of UV-divergencies, caused by finite discontinuities in the field configuration, is discussed in the context of 1+1-dimensional kink models. The relationship between this procedure and the appearance of quantum copies
We reanalyze and expand upon models proposed in 2015 for linear dilaton black holes, and use them to test several speculative ideas about black hole physics. We examine ideas based on the definition of quantum extremal surfaces in quantum field theor