ﻻ يوجد ملخص باللغة العربية
We extend a constrained version of Implicit Regularization (CIR) beyond one loop order for gauge field theories. In this framework, the ultraviolet content of the model is displayed in terms of momentum loop integrals order by order in perturbation theory for any Feynman diagram, while the Ward-Slavnov-Taylor identities are controlled by finite surface terms. To illustrate, we apply CIR to massless abelian Gauge Field Theories (scalar and spinorial QED) to two loop order and calculate the two-loop beta-function of the spinorial QED.
The first order form of the Yang-Mills and Einstein-Hilbert actions are quantized, and it is shown how Greens functions computed using the first and the second order form of these theories are related. Next we show how by use of Lagrange multiplier f
We demonstrate explicitly the absence of the quantum corrections to the Carroll-Field-Jackiw (CFJ) term beyond one-loop within the Lorentz-breaking CPT-odd extension of QED. The proof holds within two prescriptions of quantum calculations, with the a
We establish a systematic way to calculate multiloop amplitudes of infrared safe massless models with Implicit Regularization (IR), with a direct cancelation of the fictitious mass introduced by the procedure. The ultraviolet content of such amplitud
One loop anomalies and their dependence on antifields for general gauge theories are investigated within a Pauli-Villars regularization scheme. For on-shell theories {it i.e.}, with open algebras or on-shell reducible theories, the antifield dependen
Reflexive polygons have been extensively studied in a variety of contexts in mathematics and physics. We generalize this programme by looking at the 45 different lattice polygons with two interior points up to SL(2,$mathbb{Z}$) equivalence. Each corr