ترغب بنشر مسار تعليمي؟ اضغط هنا

A (p,q)-deformed Landau problem in a spherical harmonic well: spectrum and noncommuting coordinates

285   0   0.0 ( 0 )
 نشر من قبل Jan Govaerts
 تاريخ النشر 2006
  مجال البحث
والبحث باللغة English
 تأليف Joseph Ben Geloun




اسأل ChatGPT حول البحث

A (p,q)-deformation of the Landau problem in a spherically symmetric harmonic potential is considered. The quantum spectrum as well as space noncommutativity are established, whether for the full Landau problem or its quantum Hall projections. The well known noncommutative geometry in each Landau level is recovered in the appropriate limit p,q=1. However, a novel noncommutative algebra for space coordinates is obtained in the (p,q)-deformed case, which could also be of interest to collective phenomena in condensed matter systems.

قيم البحث

اقرأ أيضاً

We consider, in a superspace, new operator dependent noncommutative (NC) geometries of the nonlinear quantum Hall limit related to classes of f-deformed Landau operators in the spherical harmonic well. Different NC coordinate algebras are determined using unitary representation spaces of Fock-Heisenberg tensored algebras and of the Schwinger-Fock realisation of the su(1,1) Lie algebra. A reduced model allowing an underlying N=2 superalgebra is also discussed.
We investigate the planar anisotropic harmonic oscillator with explicit rotational symmetry as a particle model with non-commutative coordinates. It includes the exotic Newton-Hooke particle and the non-commutative Landau problem as special, isotropi c and maximally anisotropic, cases. The system is described by the same (2+1)-dimensional exotic Newton-Hooke symmetry as in the isotropic case, and develops three different phases depending on the values of the two central charges. The special cases of the exotic Newton-Hooke particle and non-commutative Landau problem are shown to be characterized by additional, so(3) or so(2,1) Lie symmetry, which reflects their peculiar spectral properties.
In this paper we construct a unitary matrix model that captures the asymptotic growth of Young diagrams under $q$-deformed Plancherel measure. The matrix model is a $q$ analog of Gross-Witten-Wadia (GWW) matrix model. In the large $N$ limit the model exhibits a third order phase transition between no-gap and gapped phases, which is a $q$-deformed version of the GWW phase transition. We show that the no-gap phase of this matrix model captures the asymptotic growth of Young diagrams equipped with $q$-deformed Plancherel measure. The no-gap solutions also satisfies a differential equation which is the $q$-analogue of the automodel equation. We further provide a droplet description for these growing Young diagrams. Quantising these droplets we identify the Young diagrams with coherent states in the Hilbert space. We also elaborate the connection between moments of Young diagrams and the infinite number of commuting Hamiltonians obtained from the large $N$ droplets and explicitly compute the moments for asymptotic Young diagrams.
We study various geometrical aspects of Schroedinger space-times with dynamical exponent z>1 and compare them with the properties of AdS (z=1). The Schroedinger metrics are singular for 1<z<2 while the usual Poincare coordinates are incomplete for z geq 2. For z=2 we obtain a global coordinate system and we explain the relations among its geodesic completeness, the choice of global time, and the harmonic trapping of non-relativistic CFTs. For z>2, we show that the Schroedinger space-times admit no global timelike Killing vectors.
We described the $q$-deformed phase space. The $q$-deformed Hamilton eqations of motion are derived and discussed. Some simple models are considered.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا