ﻻ يوجد ملخص باللغة العربية
We study various geometrical aspects of Schroedinger space-times with dynamical exponent z>1 and compare them with the properties of AdS (z=1). The Schroedinger metrics are singular for 1<z<2 while the usual Poincare coordinates are incomplete for z geq 2. For z=2 we obtain a global coordinate system and we explain the relations among its geodesic completeness, the choice of global time, and the harmonic trapping of non-relativistic CFTs. For z>2, we show that the Schroedinger space-times admit no global timelike Killing vectors.
We define and study asymptotic Killing and conformal Killing vectors in $d$-dimensional Minkowski, (A)dS, $mathbb{R}times S^{d-1}$ and ${rm AdS}_2times S^{d-2}$. We construct the associated quantum charges for an arbitrary CFT and show they satisfy a
We construct five dimensional black rings in global anti-de Sitter space using numerical methods. These rings satisfy the BPS bound $| J | < M ell$, but the angular velocity always violates the Hawking-Reall bound $| Omega_H ell | leq 1$, indicating
Motivated by the study of conserved Aretakis charges for a scalar field on the horizon of an extremal black hole, we construct the metrics for certain classes of four-dimensional and five-dimensional extremal rotating black holes in Gaussian null coo
We study some consequences of noncommutativity to homogeneous cosmologies by introducing a deformation of the commutation relation between the minisuperspace variables. The investigation is carried out for the Kantowski-Sachs model by means of a comp
We review the remarkable progress that has been made the last 15 years towards the classification of supersymmetric solutions with emphasis on the description of the bilinears and spinorial geometry methods. We describe in detail the geometry of back