ﻻ يوجد ملخص باللغة العربية
In this paper we construct a unitary matrix model that captures the asymptotic growth of Young diagrams under $q$-deformed Plancherel measure. The matrix model is a $q$ analog of Gross-Witten-Wadia (GWW) matrix model. In the large $N$ limit the model exhibits a third order phase transition between no-gap and gapped phases, which is a $q$-deformed version of the GWW phase transition. We show that the no-gap phase of this matrix model captures the asymptotic growth of Young diagrams equipped with $q$-deformed Plancherel measure. The no-gap solutions also satisfies a differential equation which is the $q$-analogue of the automodel equation. We further provide a droplet description for these growing Young diagrams. Quantising these droplets we identify the Young diagrams with coherent states in the Hilbert space. We also elaborate the connection between moments of Young diagrams and the infinite number of commuting Hamiltonians obtained from the large $N$ droplets and explicitly compute the moments for asymptotic Young diagrams.
Growth of Young diagrams, equipped with Plancherel measure, follows the automodel equation of Kerov. Using the technology of unitary matrix model we show that such growth process is exactly same as the growth of gap-less phase in Gross-Witten and Wad
We study dual geometries to a deformed ABJM model with spatially dependent source functions at finite temperature. These source functions are proportional to the mass function $m(x)= m_0 sin k x$ and its derivative $m(x)$. As dual geometries, we find
We consider one-plaquette unitary matrix model at finite $N$ using exact expression of the partition function for both SU($N$) and U($N$) groups.
In the present paper we describe the procedure of the Q-operators construction for the q-deformed model, described by the Lax operator, which is important to formulate the Bethe ansatz for the Sin-Gordon model. This Lax operator can also be considere
We described the $q$-deformed phase space. The $q$-deformed Hamilton eqations of motion are derived and discussed. Some simple models are considered.