ﻻ يوجد ملخص باللغة العربية
The classic argument by Polyakov showing that monopoles produce confinement in the Higgs phase of the Georgi-Glashow model is generalized to study the spectrum of k-strings. We find that the leading-order low-density approximation yields Casimir scaling in the weakly-coupled 3-d SU(N) Georgi-Glashow model. Corrections to the Casimir formula are considered. When k is of the order of N, the non-diluteness effect is of the same order as the leading term, indicating that non-diluteness can significantly change the Casimir-scaling behavior. The correction produced by the propagating Higgs field is also studied and found to increase, together with the non-diluteness effect, the Casimir-scaling ratio. Furthermore, a correction due to closed k-strings is also computed and is shown to yield the same k-dependence as the one due to non-diluteness, but with the opposite sign and a nontrivial N-dependence. Finally, we consider the possible implications of our analysis for the SU(N) analogue of compact QED in four dimensions.
The nature of the deconfining phase transition in the 2+1-dimensional SU(N) Georgi-Glashow model is investigated. Within the dimensional-reduction hypothesis, the properties of the transition are described by a two-dimensional vectorial Coulomb gas m
We study correlations functions of magnetic vortices $V$ and Polyakov loop $P$ operators in the 2+1 dimensional Georgi-Glashow model in the vicinity of the deconfining phase transition. In this regime the (dimensionally reduced) model is mapped onto
We study the finite-temperature properties of the supersymmetric version of (2+1)D Georgi-Glashow model. As opposed to its nonsupersymmetric counterpart, the parity symmetry in this theory at zero temperature is spontaneously broken by the bilinear p
The quantisation of the Wess-Zumino-Witten model on a circle is discussed in the case of $SU(N)$ at level $k$. The quantum commutation of the chiral vertex operators is described by an exchange relation with a braiding matrix, $Q$. Using quantum cons
We present here the results of our high accuracy simulations of $qbar q$ potential in $d=4$ SU(3) Yang-Mills theory. We measure this quantity by measuring the {it Polyakov Loop Correlators} using the {it exponential variance reduction technique(multi