ﻻ يوجد ملخص باللغة العربية
We study correlations functions of magnetic vortices $V$ and Polyakov loop $P$ operators in the 2+1 dimensional Georgi-Glashow model in the vicinity of the deconfining phase transition. In this regime the (dimensionally reduced) model is mapped onto a free theory of two massive Majorana fermions. We utilize this fermionic representation to explicitly calculate the expectation values of $V$ and $P$ as well as their correlators. In particular we show that the $VV$ correlator is large, and thus the anomalous breaking of the magnetic $U(1)$ symmetry is order one effect in the near critical region. We also calculate the contribution of magnetic vortices to the entropy and the free energy of the system.
We study the finite-temperature properties of the supersymmetric version of (2+1)D Georgi-Glashow model. As opposed to its nonsupersymmetric counterpart, the parity symmetry in this theory at zero temperature is spontaneously broken by the bilinear p
The classic argument by Polyakov showing that monopoles produce confinement in the Higgs phase of the Georgi-Glashow model is generalized to study the spectrum of k-strings. We find that the leading-order low-density approximation yields Casimir scal
The nature of the deconfining phase transition in the 2+1-dimensional SU(N) Georgi-Glashow model is investigated. Within the dimensional-reduction hypothesis, the properties of the transition are described by a two-dimensional vectorial Coulomb gas m
The topology of orientable (2 + 1)d spacetimes can be captured by certain lumps of non-trivial topology called topological geons. They are the topological analogues of conventional solitons. We give a description of topological geons where the degree
A famous example of gauge/gravity duality is the result that the entropy density of strongly coupled ${cal N}=4$ SYM in four dimensions for large N is exactly 3/4 of the Stefan-Boltzmann limit. In this work, I revisit the massless O(N) model in 2+1 d