ترغب بنشر مسار تعليمي؟ اضغط هنا

Nature of the deconfining phase transition in the 2+1-dimensional SU(N) Georgi-Glashow model

127   0   0.0 ( 0 )
 نشر من قبل Philippe Lecheminant
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The nature of the deconfining phase transition in the 2+1-dimensional SU(N) Georgi-Glashow model is investigated. Within the dimensional-reduction hypothesis, the properties of the transition are described by a two-dimensional vectorial Coulomb gas models of electric and magnetic charges. The resulting critical properties are governed by a generalized SU(N) sine-Gordon model with self-dual symmetry. We show that this model displays a massless flow to an infrared fixed point which corresponds to the Z$_N$ parafermions conformal field theory. This result, in turn, supports the conjecture of Kogan, Tekin, and Kovner that the deconfining transition in the 2+1-dimensional SU(N) Georgi-Glashow model belongs to the Z$_N$ universality class.



قيم البحث

اقرأ أيضاً

The classic argument by Polyakov showing that monopoles produce confinement in the Higgs phase of the Georgi-Glashow model is generalized to study the spectrum of k-strings. We find that the leading-order low-density approximation yields Casimir scal ing in the weakly-coupled 3-d SU(N) Georgi-Glashow model. Corrections to the Casimir formula are considered. When k is of the order of N, the non-diluteness effect is of the same order as the leading term, indicating that non-diluteness can significantly change the Casimir-scaling behavior. The correction produced by the propagating Higgs field is also studied and found to increase, together with the non-diluteness effect, the Casimir-scaling ratio. Furthermore, a correction due to closed k-strings is also computed and is shown to yield the same k-dependence as the one due to non-diluteness, but with the opposite sign and a nontrivial N-dependence. Finally, we consider the possible implications of our analysis for the SU(N) analogue of compact QED in four dimensions.
We study correlations functions of magnetic vortices $V$ and Polyakov loop $P$ operators in the 2+1 dimensional Georgi-Glashow model in the vicinity of the deconfining phase transition. In this regime the (dimensionally reduced) model is mapped onto a free theory of two massive Majorana fermions. We utilize this fermionic representation to explicitly calculate the expectation values of $V$ and $P$ as well as their correlators. In particular we show that the $VV$ correlator is large, and thus the anomalous breaking of the magnetic $U(1)$ symmetry is order one effect in the near critical region. We also calculate the contribution of magnetic vortices to the entropy and the free energy of the system.
We investigate the dissipative real-time evolution of the order parameter for the deconfining transition in the pure SU(2) gauge theory. The approach to equilibrium after a quench to temperatures well above the critical one is described by a Langevin equation. To fix completely the markovian Langevin dynamics we choose the dissipation coefficient, that is a function of the temperature, guided by preliminary Monte Carlo simulations for various temperatures. Assuming a relationship between Monte Carlo time and real time, we estimate the delay in thermalization brought about by dissipation and noise.
We study the finite-temperature properties of the supersymmetric version of (2+1)D Georgi-Glashow model. As opposed to its nonsupersymmetric counterpart, the parity symmetry in this theory at zero temperature is spontaneously broken by the bilinear p hotino condensate. We find that as the temperature is raised, the deconfinement and the parity restoration occur in this model at the same point $T_c=g^2/8pi$. The transition is continuous, but is not of the Ising type as in nonsupersymmetric Georgi-Glashow model, but rather of the Berezinsky-Kosterlitz-Thouless type as in $Z_4$-invariant spin model.
We consider minimally supersymmetric QCD in 2+1 dimensions, with Chern-Simons and superpotential interactions. We propose an infrared $SU(N) leftrightarrow U(k)$ duality involving gauge-singlet fields on one of the two sides. It shares qualitative fe atures both with 3d bosonization and with 4d Seiberg duality. We provide a few consistency checks of the proposal, mapping the structure of vacua and performing perturbative computations in the $varepsilon$-expansion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا