ترغب بنشر مسار تعليمي؟ اضغط هنا

fastNLO: Fast pQCD Calculations for PDF Fits

51   0   0.0 ( 0 )
 نشر من قبل Markus Wobisch
 تاريخ النشر 2006
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a method for very fast repeated computations of higher-order cross sections in hadron-induced processes for arbitrary parton density functions. A full implementation of the method for computations of jet cross sections in Deep-Inelastic Scattering and in Hadron-Hadron Collisions is offered by the fastNLO project. A web-interface for online calculations and user code can be found at http://hepforge.cedar.ac.uk/fastnlo/ .



قيم البحث

اقرأ أيضاً

Direct photon production in hadronic collisions provides a handle on the gluon PDF by means of the QCD Compton scattering process. In this work we revisit the impact of direct photon production on a global PDF analysis, motivated by the recent availa bility of the next-to-next-to-leading (NNLO) calculation for this process. We demonstrate that the inclusion of NNLO QCD and leading-logarithmic electroweak corrections leads to a good quantitative agreement with the ATLAS measurements at 8 TeV and 13 TeV, except for the most forward rapidity region in the former case. By including the ATLAS 8 TeV direct photon production data in the NNPDF3.1 NNLO global analysis, we assess its impact on the medium-x gluon. We also study the constraining power of the direct photon production measurements on PDF fits based on different datasets, in particular on the NNPDF3.1 no-LHC and collider-only fits. We also present updated NNLO theoretical predictions for direct photon production at 13 TeV that include the constraints from the 8 TeV measurements.
We investigate the impact of displaced heavy quark matching scales in a global fit. The heavy quark matching scale $mu_{m}$ determines at which energy scale $mu$ the QCD theory transitions from $N_{F}$ to $N_{F}+1$ in the Variable Flavor Number Schem e (VFNS) for the evolution of the Parton Distribution Functions (PDFs) and strong coupling $alpha_S(mu)$. We study the variation of the matching scales, and their impact on a global PDF fit of the combined HERA data. As the choice of the matching scale $mu_{m}$ effectively is a choice of scheme, this represents a theoretical uncertainty; ideally, we would like to see minimal dependence on this parameter. For the transition across the charm quark (from $N_{F}=3$ to $4$), we find a large $mu_m=mu_{c}$ dependence of the global fit $chi^2$ at NLO, but this is significantly reduced at NNLO. For the transition across the bottom quark (from $N_{F}=4$ to $5$), we have a reduced $mu_{m}=mu_b$ dependence of the $chi^2$ at both NLO and NNLO as compared to the charm. This feature is now implemented in xFitter 2.0.0, an open source QCD fit framework.
We illustrate a technique for fitting lattice QCD correlators to sums of exponentials that is significantly faster than traditional fitting methods --- 10--40 times faster for the realistic examples we present. Our examples are drawn from a recent an alysis of the Upsilon spectrum, and another recent analysis of the D -> pi semileptonic form factor. For single correlators, we show how to simplify traditional effective-mass analyses.
We show how to account for correlations between theoretical uncertainties incorporated in parton distribution function (PDF) fits, and the theoretical uncertainties in the predictions made using these PDFs. We demonstrate by explicit calculations, bo th analytical and numerical, that these correlations can lead to corrections to the central values of the predictions, and reductions in both the PDF uncertainties and the theoretical uncertainties in the prediction. We illustrate our results with predictions for top production rapidity distributions and the Higgs total cross-section at the LHC, using the NLO NNPDF3.1 PDF set which incorporates missing higher order uncertainties. We conclude that the inclusion of correlations can increase both the accuracy and precision of predictions involving PDFs, particularly for processes with data already included in the PDF fit.
The multiplicity distribution of the gluons produced at the high energy is evaluated in BFKL approach. The distribution has Poisson form that can explain experimentally observed KNO scaling.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا