ترغب بنشر مسار تعليمي؟ اضغط هنا

Direct photon production and PDF fits reloaded

92   0   0.0 ( 0 )
 نشر من قبل Emma Slade
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Direct photon production in hadronic collisions provides a handle on the gluon PDF by means of the QCD Compton scattering process. In this work we revisit the impact of direct photon production on a global PDF analysis, motivated by the recent availability of the next-to-next-to-leading (NNLO) calculation for this process. We demonstrate that the inclusion of NNLO QCD and leading-logarithmic electroweak corrections leads to a good quantitative agreement with the ATLAS measurements at 8 TeV and 13 TeV, except for the most forward rapidity region in the former case. By including the ATLAS 8 TeV direct photon production data in the NNPDF3.1 NNLO global analysis, we assess its impact on the medium-x gluon. We also study the constraining power of the direct photon production measurements on PDF fits based on different datasets, in particular on the NNPDF3.1 no-LHC and collider-only fits. We also present updated NNLO theoretical predictions for direct photon production at 13 TeV that include the constraints from the 8 TeV measurements.



قيم البحث

اقرأ أيضاً

We apply a method proposed by members of CTEQ Collaboration to estimate the uncertainty in associated $W$-Higgs boson production at Run II of the Tevatron due to our imprecise knowledge of parton distribution functions. We find that the PDF uncertain ties for the signal and background rates are of the order 3%. The PDF uncertainties for the important statistical quantities (significance of the Higgs boson discovery, accuracy of the measurement of the (WH) cross section) are smaller (1.5%) due to the strong correlation of the signal and background.
Building upon the most recent CT18 global fit, we present a new calculation of the photon content of the proton based on an application of the LUX formalism. In this work, we explore two principal variations of the LUX ansatz. In one approach, which we designate CT18lux, the photon PDF is calculated directly using the LUX formula for all scales, $mu$. In an alternative realization, CT18qed, we instead initialize the photon PDF in terms of the LUX formulation at a lower scale, $mu! sim! mu_0$, and evolve to higher scales with a combined QED+QCD kernel at $mathcal{O}(alpha),~mathcal{O}(alphaalpha_s)$ and $mathcal{O}(alpha^2)$. While we find these two approaches generally agree, especially at intermediate $x$ ($10^{-3}lesssim xlesssim0.3$), we discuss some moderate discrepancies that can occur toward the end-point regions at very high or low $x$. We also study effects that follow from variations of the inputs to the LUX calculation originating outside the pure deeply-inelastic scattering (DIS) region, including from elastic form factors and other contributions to the photon PDF. Finally, we investigate the phenomenological implications of these photon PDFs for the LHC, including high-mass Drell-Yan, vector-boson pair, top-quark pair, and Higgs associated with vector-boson production.
We investigate the role of anomalous gauge boson and fermion couplings on the production of $WZ$ and $W^+W^-$ pairs at the LHC to NLO QCD in the Standard Model effective field theory, including dimension-6 operators. Our results are implemented in a publicly available version of the POWHEG-BOX. We combine our $WZ$ results in the leptonic final state $e u mu^+mu^-$ with previous $W^+W^-$ results to demonstrate the numerical effects of NLO QCD corrections on the limits on effective couplings derived from ATLAS and CMS 8 and 13 TeV differential measurements. Our study demonstrates the importance of including NLO QCD SMEFT corrections in the $WZ$ analysis, while the effects on $WW$ production are smaller. We also show that the $mathcal{O}(1/Lambda^4)$ contributions dominate the analysis, where $Lambda$ is the high energy scale associated with the SMEFT.
We present a method for very fast repeated computations of higher-order cross sections in hadron-induced processes for arbitrary parton density functions. A full implementation of the method for computations of jet cross sections in Deep-Inelastic Sc attering and in Hadron-Hadron Collisions is offered by the fastNLO project. A web-interface for online calculations and user code can be found at http://hepforge.cedar.ac.uk/fastnlo/ .
177 - K. Kovarik , T. Stavreva 2012
We investigate a possible use of direct photon production in association with a heavy quark to test different models of intrinsic heavy quark parton distribution function (PDF) at the Tevatron, at the large hadron collider (LHC) and at RHIC.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا