ﻻ يوجد ملخص باللغة العربية
We present the new Coherent Exclusive Exponentiation (CEEX), in comparison to the older Exclusive Exponentiation (EEX) and the semi-analytical Inclusive Exponentiation (IEX), for the process e+e- -> f-bar f + n(gamma), f=mu,tau,d,u,s,c,b, with validity for centre of mass energies from tau lepton threshold to 1 TeV. We analyse 2f numerical results at the Z-peak, 189 GeV and 500 GeV. We also present precision calculations of the signal processes e+e- -> 4f in which the double resonant W+W- intermediate state occurs using our YFSWW3-1.14 MC. Sample 4f Monte Carlo data are explicitly illustrated in comparison to the literature at LEP2 energies. These comparisons show that a TU for the signal process cross section of 0.4 percent is valid for the LEP2 200 GeV energy. LC energy results are also shown.
We present precision calculations of the processes e+e- -> 4-fermions in which the double resonant W+W- intermediate state occurs. Referring to this latter intermediate state as the signal process, we show that, by using the YFS Monte Carlo event gen
We present precision calculations of the processes e+ e- -> 4-fermions in which the double resonant W+ W- and ZZ intermediate states occur. Referring to these latter intermediate states as the signal processes, we show that, by using the YFS Monte Ca
We perform a dedicated study of the four-fermion production process e- e+ -> mu- nubar_mu u dbar X near the W pair-production threshold in view of the importance of this process for a precise measurement of the W boson mass. Accurate theoretical pred
We revisit scalar leptoquark pair-production at hadron colliders and significantly improve the level of precision of the cross section calculations. Apart from QCD contributions, we include lepton t-channel exchange diagrams that turn out to be relev
We present the LL final state radiative effects for the exact O(alpha) YFS exponentiated (un)stable WW pair production at LEP2/NLC energies using Monte Carlo event generator methods. The respective event generator, version 1.12 of the program YFSWW3,