ﻻ يوجد ملخص باللغة العربية
We present precision calculations of the processes e+e- -> 4-fermions in which the double resonant W+W- intermediate state occurs. Referring to this latter intermediate state as the signal process, we show that, by using the YFS Monte Carlo event generators YFSWW3-1.14 and KORALW1.42 in an appropriate combination, we achieve a physical precision on the signal process, as isolated with LEP2 MC Workshop cuts, below 0.5 per cent. We stress the full gauge invariance of our calculations and we compare our results with those of other authors where appropriate. In particular, sample Monte Carlo data are explicitly illustrated and compared with the results of the program RacoonWW of Dittmaier {it et al.}. In this way, we show that the total (physical plus technical) precision tag for the WW signal process cross section is 0.4 per cent for 200 GeV, for example. Results are also given for 500 GeV with an eye toward the LC.
We present the LL final state radiative effects for the exact O(alpha) YFS exponentiated (un)stable WW pair production at LEP2/NLC energies using Monte Carlo event generator methods. The respective event generator, version 1.12 of the program YFSWW3,
We present the new Coherent Exclusive Exponentiation (CEEX), in comparison to the older Exclusive Exponentiation (EEX) and the semi-analytical Inclusive Exponentiation (IEX), for the process e+e- -> f-bar f + n(gamma), f=mu,tau,d,u,s,c,b, with validi
In the energy region of LEP2 and above, four fermion final states in e+e- collisions can be produced by Feynman diagrams involving two, one or zero resonant bosons...
In a study of the reaction e-e+ -> W-W+ with the DELPHI detector, the probabilities of the two W particles occurring in the joint polarisation states transverse-transverse (TT), longitudinal-transverse plus transverse-longitudinal (LT) and longitudin
The mass of the W boson has been measured by the LEP collaborations from the data recorded during the LEP2 programme at e+ e- centre of mass energies from 161 to 209 GeV, giving the result : mw = 80.450 +/- 0.039 GeV/c^2. This paper discusses the mea