ﻻ يوجد ملخص باللغة العربية
The Source Galerkin Method is a new numerical technique that is being developed to solve Quantum Field Theories on the continuum. It is not based on Monte Carlo techniques and has a measure to evaluate relative errors. It promises to increase the accuracy and speed of calculations, and takes full advantage of symmetries of the theory. The application of this method to the non-linear sigma model is outlined.
The Source Galerkin method finds approximate solutions to the functional differential equations of field theories in the presence of external sources. While developing this process, it was recognized that approximations of the spectral representation
Supersymmetry is a prominent candidate for physics beyond the standard model. In order to compute the spectrum of supersymmetric theories, we employ nonperturbative lattice QFT techniques which due to the discretisation of spacetime violate supersymm
Many non-Hermitian but PT-symmetric theories are known to have a real positive spectrum. Since the action is complex for there theories, Monte Carlo methods do not apply. In this paper the first field-theoretic method for numerical simulations of PT-
An approach to calculating approximate solutions to the continuum Schwinger-Dyson equations is outlined, with examples for phi^4 in D=1. This approach is based on the source Galerkin methods developed by Garcia, Guralnik and Lawson. Numerical issues
The solution of gauge theories is one of the most promising applications of quantum technologies. Here, we discuss the approach to the continuum limit for $U(1)$ gauge theories regularized via finite-dimensional Hilbert spaces of quantum spin-$S$ ope