ترغب بنشر مسار تعليمي؟ اضغط هنا

Achieving the continuum limit of quantum link lattice gauge theories on quantum devices

85   0   0.0 ( 0 )
 نشر من قبل Torsten V. Zache
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The solution of gauge theories is one of the most promising applications of quantum technologies. Here, we discuss the approach to the continuum limit for $U(1)$ gauge theories regularized via finite-dimensional Hilbert spaces of quantum spin-$S$ operators, known as quantum link models. For quantum electrodynamics (QED) in one spatial dimension, we numerically demonstrate the continuum limit by extrapolating the ground state energy, the scalar, and the vector meson masses to large spin lengths $S$, large volume $N$, and vanishing lattice spacing $a$. By analytically solving Gauss law for arbitrary $S$, we obtain a generalized PXP spin model and count the physical Hilbert space dimension analytically. This allows us to quantify the required resources for reliable extrapolations to the continuum limit on quantum devices. We use a functional integral approach to relate the model with large values of half-integer spins to the physics at topological angle $Theta=pi$. Our findings indicate that quantum devices will in the foreseeable future be able to quantitatively probe the QED regime with quantum link models.



قيم البحث

اقرأ أيضاً

The $U(1)$ quantum link model on the triangular lattice has two rotation-symmetry-breaking nematic confined phases. Static external charges are connected by confining strings consisting of individual strands with fractionalized electric flux. The two phases are separated by a weak first order phase transition with an emergent almost exact $SO(2)$ symmetry. We construct a quantum circuit on a chip to facilitate near-term quantum computations of the non-trivial string dynamics.
Recently, quantum simulation of low-dimensional lattice gauge theories (LGTs) has attracted many interests, which may improve our understanding of strongly correlated quantum many-body systems. Here, we propose an implementation to approximate $mathb b{Z}_2$ LGT on superconducting quantum circuits, where the effective theory is a mixture of a LGT and a gauge-broken term. Using matrix product state based methods, both the ground state properties and quench dynamics are systematically investigated. With an increase of the transverse (electric) field, the system displays a quantum phase transition from a disordered phase to a translational symmetry breaking phase. In the ordered phase, an approximate Gauss law of the $mathbb{Z}_2$ LGT emerges in the ground state. Moreover, to shed light on the experiments, we also study the quench dynamics, where there is a dynamical signature of the spontaneous translational symmetry breaking. The spreading of the single particle of matter degree is diffusive under the weak transverse field, while it is ballistic with small velocity for the strong field. Furthermore, due to the emergent Gauss law under the strong transverse field, the matter degree can also exhibit a confinement which leads to a strong suppression of the nearest-neighbor hopping. Our results pave the way for simulating the LGT on superconducting circuits, including the quantum phase transition and quench dynamics.
We construct lattice gauge theories in which the elements of the link matrices are represented by non-commuting operators acting in a Hilbert space. These quantum link models are related to ordinary lattice gauge theories in the same way as quantum s pin models are related to ordinary classical spin systems. Here U(1) and SU(2) quantum link models are constructed explicitly. As Hamiltonian theories quantum link models are nonrelativistic gauge theories with potential applications in condensed matter physics. When formulated with a fifth Euclidean dimension, universality arguments suggest that dimensional reduction to four dimensions occurs. Hence, quantum link models are also reformulations of ordinary quantum field theories and are applicable to particle physics, for example to QCD. The configuration space of quantum link models is discrete and hence their numerical treatment should be simpler than that of ordinary lattice gauge theories with a continuous configuration space.
We investigate the continuum limit of a compact formulation of the lattice U(1) gauge theory in 4 dimensions using a nonperturbative gauge-fixed regularization. We find clear evidence of a continuous phase transition in the pure gauge theory for all values of the gauge coupling (with gauge symmetry restored). When probed with quenched staggered fermions with U(1) charge, the theory clearly has a chiral transition for large gauge couplings. We identify the only possible region in the parameter space where a continuum limit with nonperturbative physics may appear.
In the future, ab initio quantum simulations of heavy ion collisions may become possible with large-scale fault-tolerant quantum computers. We propose a quantum algorithm for studying these collisions by looking at a class of observables requiring dr amatically smaller volumes: transport coefficients. These form nonperturbative inputs into theoretical models of heavy ions; thus, their calculation reduces theoretical uncertainties without the need for a full-scale simulation of the collision. We derive the necessary lattice operators in the Hamiltonian formulation and describe how to obtain them on quantum computers. Additionally, we discuss ways to efficiently prepare the relevant thermal state of a gauge theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا