ترغب بنشر مسار تعليمي؟ اضغط هنا

Numerical Quantum Field Theory on the Continuum and a New Look at Perturbation Theory

127   0   0.0 ( 0 )
 نشر من قبل Pinar Emirdag
 تاريخ النشر 2001
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The Source Galerkin method finds approximate solutions to the functional differential equations of field theories in the presence of external sources. While developing this process, it was recognized that approximations of the spectral representations of the Greens functions by Sinc function expansions are an extremely powerful calculative tool. Specifically, this understanding makes it not only possible to apply the Source Galerkin method to higher dimensional field theories, but also leads to a new approach to perturbation theory calculations in scalar and fermionic field theories. This report summarizes the methodologies for solving quantum field theories with the Source Galerkin method and for performing perturbation theory calculations using Sinc approximations.

قيم البحث

اقرأ أيضاً

An approach to calculating approximate solutions to the continuum Schwinger-Dyson equations is outlined, with examples for phi^4 in D=1. This approach is based on the source Galerkin methods developed by Garcia, Guralnik and Lawson. Numerical issues and opportunities for future calculations are also discussed briefly.
The Source Galerkin Method is a new numerical technique that is being developed to solve Quantum Field Theories on the continuum. It is not based on Monte Carlo techniques and has a measure to evaluate relative errors. It promises to increase the acc uracy and speed of calculations, and takes full advantage of symmetries of the theory. The application of this method to the non-linear sigma model is outlined.
Numerical stochastic perturbation theory is a powerful tool for estimating high-order perturbative expansions in lattice field theory. The standard algorithms based on the Langevin equation, however, suffer from several limitations which in practice restrict the potential of this technique. In this work we investigate some alternative methods which could in principle improve on the standard approach. In particular, we present a study of the recently proposed Instantaneous Stochastic Perturbation Theory, as well as a formulation of numerical stochastic perturbation theory based on Generalized Hybrid Molecular Dynamics algorithms. The viability of these methods is investigated in $varphi^4$ theory.
In this contribution we present an exploratory study of several novel methods for numerical stochastic perturbation theory. For the investigation we consider observables defined through the gradient flow in the simple {phi}^4 theory.
95 - Stefan Sint 2016
Precision tests of QCD perturbation theory are not readily available from experimental data. The main reasons are systematic uncertainties due to the confinement of quarks and gluons, as well as kinematical constraints which limit the accessible ener gy scales. We here show how continuum extrapolated lattice data may overcome such problems and provide excellent probes of renormalized perturbation theory. This work corresponds to an essential step in the ALPHA collaborations project to determine the $Lambda$-parameter in 3-flavour QCD. I explain the basic techniques used in the high energy regime, namely the use of mass-independent renormalization schemes for the QCD coupling constant in a finite Euclidean space time volume. When combined with finite size techniques this allows one to iteratively step up the energy scale by factors of 2, thereby quickly covering two orders of magnitude in scale. We may then compare perturbation theory (with $beta$-functions available up to 3-loop order) to our non-perturbative data for a 1-parameter family of running couplings. We conclude that a target precision of 3 percent for the $Lambda$-parameter requires non-perturbative data up to scales where $alpha_sapprox 0.1$, whereas the apparent precision obtained from applying perturbation theory around $alpha_s approx 0.2$ can be misleading. This should be taken as a general warning to practitioners of QCD perturbation theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا