ﻻ يوجد ملخص باللغة العربية
The performance of optical clocks has strongly progressed in recent years, and accuracies and instabilities of 1 part in 10^18 are expected in the near future. The operation of optical clocks in space provides new scientific and technological opportunities. In particular, an earth-orbiting satellite containing an ensemble of optical clocks would allow a precision measurement of the gravitational redshift, navigation with improved precision, mapping of the earths gravitational potential by relativistic geodesy, and comparisons between ground clocks.
A recent proposal describes space based gravitational wave (GW) detection with optical lattice atomic clocks [Kolkowitz et. al., Phys. Rev. D 94, 124043 (2016)] [1]. Based on their setup, we propose a new measurement method for gravitational wave det
Good clocks are of importance both to fundamental physics and for applications in astronomy, metrology and global positioning systems. In a recent technological breakthrough, researchers at NIST have been able to achieve a stability of 1 part in $10^
We discuss the theoretical analysis and interpretation of space-time separated clock experiments in the context of a space-time varying scalar field that is non-universally coupled to the standard model fields. If massive, such a field is a candidate
Phase compensated optical fiber links enable high accuracy atomic clocks separated by thousands of kilometers to be compared with unprecedented statistical resolution. By searching for a daily variation of the frequency difference between four stront
We study the distribution of quantum steerability for continuous variables between two causally disconnected open charts in de Sitter space. It is shown that quantum steerability suffers from sudden death in de Sitter space, which is quite different