ترغب بنشر مسار تعليمي؟ اضغط هنا

Test of special relativity using a fiber network of optical clocks

212   0   0.0 ( 0 )
 نشر من قبل Pac\\^ome Delva Dr.
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Phase compensated optical fiber links enable high accuracy atomic clocks separated by thousands of kilometers to be compared with unprecedented statistical resolution. By searching for a daily variation of the frequency difference between four strontium optical lattice clocks in different locations throughout Europe connected by such links, we improve upon previous tests of time dilation predicted by special relativity. We obtain a constraint on the Robertson--Mansouri--Sexl parameter $|alpha|lesssim 1.1 times10^{-8}$ quantifying a violation of time dilation, thus improving by a factor of around two the best known constraint obtained with Ives--Stilwell type experiments, and by two orders of magnitude the best constraint obtained by comparing atomic clocks. This work is the first of a new generation of tests of fundamental physics using optical clocks and fiber links. As clocks improve, and as fiber links are routinely operated, we expect that the tests initiated in this paper will improve by orders of magnitude in the near future.

قيم البحث

اقرأ أيضاً

We report a cascaded optical link of 1100 km for ultra-stable frequency distribution over an Internet fiber network. The link is composed of four spans for which the propagation noise is actively compensated. The robustness and the performance of the link are ensured by five fully automated optoelectronic stations, two of them at the link ends, and three deployed on the field and connecting the spans. This device coherently regenerates the optical signal with the heterodyne optical phase locking of a low-noise laser diode. Optical detection of the beat-note signals for the laser lock and the link noise compensation are obtained with stable and low-noise fibered optical interferometer. We show 3.5 days of continuous operation of the noise-compensated 4-span cascaded link leading to fractional frequency instability of 4x10-16 at 1-s measurement time and 1x10-19 at 2000 s. This cascaded link was extended to 1480-km with the same performance. This work is a significant step towards a sustainable wide area ultra-stable optical frequency distribution and comparison network at a very high level of performance.
The performance of optical clocks has strongly progressed in recent years, and accuracies and instabilities of 1 part in 10^18 are expected in the near future. The operation of optical clocks in space provides new scientific and technological opportu nities. In particular, an earth-orbiting satellite containing an ensemble of optical clocks would allow a precision measurement of the gravitational redshift, navigation with improved precision, mapping of the earths gravitational potential by relativistic geodesy, and comparisons between ground clocks.
289 - Claudio Nassif 2017
This research aims to introduce a new principle in the flat space-time geometry through the elimination of the classical idea of rest and by including a universal minimum limit of speed in the quantum world. This limit, unattainable by the particles, represents a preferred inertial reference frame associated with a universal background field that breaks Lorentz symmetry. There emerges a new relativistic dynamics where a minimum speed forms an inferior energy barrier. One of the interesting consequences of the existence of such a minimum speed is that it prevents the absolute zero temperature for an ultracold gas according to the third law of thermodynamics. So we will be able to provide a fundamental dynamical explanation for the third law through a connection between such a phenomenological law and the new relativistic dynamics with a minimum speed.
161 - H.Meyer 2011
Newtons Law of Gravitation has been tested at small values of the acceleration, down to a=10^{-10} m/s^2, the approximate value of MONDs constant a_0. No deviations were found.
67 - G.W. Gibbons 2015
The hodograph of a non-relativistic particle motion in Euclidean space is the curve described by its momentum vector. For a general central orbit problem the hodograph is the inverse of the pedal curve of the orbit, (i.e. its polar reciprocal), rotat ed through a right angle. Hamilton showed that for the Kepler/Coulomb problem, the hodograph is a circle whose centre is in the direction of a conserved eccentricity vector. The addition of an inverse cube law force induces the eccentricity vector to precess and with it the hodograph. The same effect is produced by a cosmic string. If one takes the relativistic momentum to define the hodograph, then for the Sommerfeld (i.e. the special relativistic Kepler/Coulomb problem) there is an effective inverse cube force which causes the hodograph to precess. If one uses Schwarzschild coordinates one may also define a a hodograph for timelike or null geodesics moving around a black hole. Iheir pedal equations are given. In special cases the hodograph may be found explicitly. For example the orbit of a photon which starts from the past singularity, grazes the horizon and returns to future singularity is a cardioid, its pedal equation is Cayleys sextic the inverse of which is Tschirhausens cubic. It is also shown that that provided one uses Beltrami coordinates, the hodograph for the non-relativistic Kepler problem on hyperbolic space is also a circle. An analogous result holds for the the round 3-sphere. In an appendix the hodograph of a particle freely moving on a group manifold equipped with a left-invariant metric is defined.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا