ترغب بنشر مسار تعليمي؟ اضغط هنا

Novel approaches to dark-matter detection using space-time separated clocks

215   0   0.0 ( 0 )
 نشر من قبل Peter Wolf
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss the theoretical analysis and interpretation of space-time separated clock experiments in the context of a space-time varying scalar field that is non-universally coupled to the standard model fields. If massive, such a field is a candidate for dark matter and could be detected in laboratory experiments. We show that space-time separated experiments have the potential to probe a fundamentally different parameter space from more common co-located experiments, allowing decorrelation of previously necessarily correlated parameters. Finally, we describe such a space-time separated clock experiment currently running at the Paris Observatory, and present some preliminary results as a proof of principle.

قيم البحث

اقرأ أيضاً

For the first time, we obtain the analytical form of black hole space-time metric in dark matter halo for the stationary situation. Using the relation between the rotation velocity (in the equatorial plane) and the spherical symmetric space-time metr ic coefficient, we obtain the space-time metric for pure dark matter. By considering the dark matter halo in spherical symmetric space-time as part of the energy-momentum tensors in the Einstein field equation, we then obtain the spherical symmetric black hole solutions in dark matter halo. Utilizing Newman-Jains method, we further generalize spherical symmetric black holes to rotational black holes. As examples, we obtain the space-time metric of black holes surrounded by Cold Dark Matter and Scalar Field Dark Matter halos, respectively. Our main results regarding the interaction between black hole and dark matter halo are as follows: (i) For both dark matter models, the density profile always produces cusp phenomenon in small scale in the relativity situation; (ii) Dark matter halo makes the black hole horizon to increase but the ergosphere to decrease, while the magnitude is small; (iii) Dark matter does not change the singularity of black holes. These results are useful to study the interaction of black hole and dark matter halo in stationary situation. Particularly, the cusp produced in the $0sim 1$ kpc scale would be observable in the Milky Way. Perspectives on future work regarding the applications of our results in astrophysics are also briefly discussed.
The performance of optical clocks has strongly progressed in recent years, and accuracies and instabilities of 1 part in 10^18 are expected in the near future. The operation of optical clocks in space provides new scientific and technological opportu nities. In particular, an earth-orbiting satellite containing an ensemble of optical clocks would allow a precision measurement of the gravitational redshift, navigation with improved precision, mapping of the earths gravitational potential by relativistic geodesy, and comparisons between ground clocks.
We study a model of power-law inflationary inflation using the Space-Time-Matter (STM) theory of gravity for a five dimensional (5D) canonical metric that describes an apparent vacuum. In this approach the expansion is governed by a single scalar (ne utral) quantum field. In particular, we study the case where the power of expansion of the universe is $p gg 1$. This kind of model is more successful than others in accounting for galaxy formation.
A recent proposal describes space based gravitational wave (GW) detection with optical lattice atomic clocks [Kolkowitz et. al., Phys. Rev. D 94, 124043 (2016)] [1]. Based on their setup, we propose a new measurement method for gravitational wave det ection in low frequency with optical lattice atomic clocks. In our method, n successive Doppler signals are collected and the summation for all these signals is made to improve the sensitivity of the low-frequency GW detection. In particular, the improvement is adjustable by the number of Doppler signals, which is equivalent to that the length between two atomic clocks is increased. Thus, the same sensitivity can be reached but with shorter distance, even though the acceleration noises lead to failing to achieve the anticipated improvement below the inflection point of frequency which is determined by the quantum projection noise. Our result is timely for the ongoing development of space-born observatories aimed at studying physical and astrophysical effects associated with low-frequency GW.
We derive a generalized Gross-Pitaevski (GP) equation immersed on a electromagnetic and a weak gravitational field starting from the covariant Complex Klein-Gordon field in a curved space-time. We compare it with the GP equation where the gravitation al field is added by hand as an external potential. We show that there is a small difference of order $g z/c^2$ between them that could be measured in the future using Bose-Einstein Condensates (BEC). This represents the next order correction to the Newtonian gravity in a curved space-time.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا