ﻻ يوجد ملخص باللغة العربية
It is shown that the equation which describes constant mean curvature surface via the generalized Weierstrass-Enneper inducing has Hamiltonian form. Its simplest finite-dimensional reduction has two degrees of freedom, integrable and its trajectories correspond to well-known Delaunay and do Carmo-Dajzcer surfaces (i.e., helicoidal constant mean curvature surfaces).
Alexandrovs soap bubble theorem asserts that spheres are the only connected closed embedded hypersurfaces in the Euclidean space with constant mean curvature. The theorem can be extended to space forms and it holds for more general functions of the p
In this paper, we consider compact free boundary constant mean curvature surfaces immersed in a mean convex body of the Euclidean space or in the unit sphere. We prove that the Morse index is bounded from below by a linear function of the genus and number of boundary components.
Alexandrovs theorem asserts that spheres are the only closed embedded constant mean curvature hypersurfaces in space forms. In this paper, we consider Alexandrovs theorem in warped product manifolds and prove a rigidity result in the spirit of Alexan
Let $C$ be a strictly convex domain in a $3$-dimensional Riemannian manifold with sectional curvature bounded above by a constant and let $Sigma$ be a constant mean curvature surface with free boundary in $C$. We provide a pinching condition on the l
In this paper, based on the local comparison principle in [12], we study the local behavior of the difference of two spacelike graphs in a neighborhood of a second contact point. Then we apply it to the constant mean curvature equation in 3-dimension