ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantitative estimates for almost constant mean curvature hypersurfaces

173   0   0.0 ( 0 )
 نشر من قبل Giulio Ciraolo
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English
 تأليف Giulio Ciraolo




اسأل ChatGPT حول البحث

Alexandrovs soap bubble theorem asserts that spheres are the only connected closed embedded hypersurfaces in the Euclidean space with constant mean curvature. The theorem can be extended to space forms and it holds for more general functions of the principal curvatures. In this short review, we discuss quantitative stability results regarding Alexandrovs theorem which have been obtained by the author in recent years. In particular, we consider hypersurfaces having mean curvature close to a constant and we quantitatively describe the proximity to a single sphere or to a collection of tangent spheres in terms of the oscillation of the mean curvature. Moreover, we also consider the problem in a non local setting, and we show that the non local effect gives a stronger rigidity to the problem and prevents the appearance of bubbling.



قيم البحث

اقرأ أيضاً

Alexandrovs theorem asserts that spheres are the only closed embedded constant mean curvature hypersurfaces in space forms. In this paper, we consider Alexandrovs theorem in warped product manifolds and prove a rigidity result in the spirit of Alexan drovs theorem. Our approach generalizes the proofs of Reilly and Ros and, under more restrictive assumptions, it provides an alternative proof of a recent theorem of Brendle.
The Alexandrov Soap Bubble Theorem asserts that the distance spheres are the only embedded closed connected hypersurfaces in space forms having constant mean curvature. The theorem can be extended to more general functions of the principal curvatures $f(k_1,ldots,k_{n-1})$ satisfying suitable conditions. In this paper we give sharp quantitative estimates of proximity to a single sphere for Alexandrov Soap Bubble Theorem in space forms when the curvature operator $f$ is close to a constant. Under an assumption that prevents bubbling, the proximity to a single sphere is quantified in terms of the oscillation of the curvature function $f$. Our approach provides a unified picture of quantitative studies of the method of moving planes in space forms.
In this paper, we derive a priori interior Hessian estimates for Lagrangian mean curvature equation if the Lagrangian phase is supercritical and has bounded second derivatives.
In this paper, we prove a classification for complete embedded constant weighted mean curvature hypersurfaces $Sigmasubsetmathbb{R}^{n+1}$. We characterize the hyperplanes and generalized round cylinders by using an intrinsic property on the norm of the second fundamental form. Furthermore, we prove an equivalence of properness, finite weighted volume and exponential volume growth for submanifolds with weighted mean curvature of at most linear growth.
In this article, we study hypersurfaces $Sigmasubset mathbb{R}^{n+1}$ with constant weighted mean curvature. Recently, Wei-Peng proved a rigidity theorem for CWMC hypersurfaces that generalizes Le-Sesum classification theorem for self-shrinker. More specifically, they showed that a complete CWMC hypersurface with polynomial volume growth, bounded norm of the second fundamental form and that satisfies $|A|^2H(H-lambda)leq H^2/2$ must either be a hyperplane or a generalized cylinder. We generalize this result by removing the bound condition on the norm of the second fundamental form. Moreover, we prove that under some conditions if the reverse inequality holds then the hypersurface must either be a hyperplane or a generalized cylinder. As an application of one of the results proved in this paper, we will obtain another version of the classification theorem obtained by the authors of this article, that is, we show that under some conditions, a complete CWMC hypersurface with $Hgeq 0$ must either be a hyperplane or a generalized cylinder.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا