ﻻ يوجد ملخص باللغة العربية
In this paper, based on the local comparison principle in [12], we study the local behavior of the difference of two spacelike graphs in a neighborhood of a second contact point. Then we apply it to the constant mean curvature equation in 3-dimensional Lorentz-Minkowski space $mathbb{L}^3$ and get the uniqueness of critical point for the solution of such equation over convex domain, which is an analogue of the result in [28]. Last, by this uniqueness, we obtain a minimum principle for a functional depending on the solution and its gradient. This gives us a sharp gradient estimate for the solution, which leads to a sharp height estimate.
We consider the geodesic X-ray transform acting on solenoidal tensor fields on a compact simply connected manifold with strictly convex boundary and non-positive curvature. We establish a stability estimate of the form $L^2mapsto H^{1/2}_{T}$, where
Alexandrovs soap bubble theorem asserts that spheres are the only connected closed embedded hypersurfaces in the Euclidean space with constant mean curvature. The theorem can be extended to space forms and it holds for more general functions of the p
Alexandrovs theorem asserts that spheres are the only closed embedded constant mean curvature hypersurfaces in space forms. In this paper, we consider Alexandrovs theorem in warped product manifolds and prove a rigidity result in the spirit of Alexan
In this paper, we consider the evolution of spacelike graphic curves defined over a piece of hyperbola $mathscr{H}^{1}(1)$, of center at origin and radius $1$, in the $2$ dimensional Lorentz-Minkowski plane $mathbb{R}^{2}_{1}$ along an anisotropic in
In this paper, we solve the Dirichlet problem with continuous boundary data for the Lagrangian mean curvature equation on a uniformly convex, bounded domain in $mathbb{R}^n$.